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1 Overview
In this supplemental, we achieve the following:

• We define MIC, the characteristic matrix, and our additional statistics, and discuss statistical signifi-
cance. (Section 2)

• We present our algorithm for approximating MIC. (Section 3)

• We discuss the methods used to generate our figures and analyze the datasets. (Section 4)

• We give instructions for how to use the MINE application. (Section 5)

• We formalize and prove the following statements: (Section 6)

– The MIC of data sampled from a distribution (X,Y ), where X and Y are continuous random
variables, converges to 0 as sample size grows if and only if X and Y are statistically indepen-
dent. (Theorem 1)

– The MIC of a noiseless functional relationship converges to 1 as sample size grows, provided the
function governing the relationship is nowhere-constant. (Theorem 3)

– More generally, the MIC of data sampled a finite union of images of nowhere-flat, nowhere-
vertical differentiable curves will approach 1 as sample size grows. (Theorem 4)

– For any nowhere-constant function, a set of points drawn from the curve defined by the function
and then vertically perturbed will receive an MIC that is lower bounded in terms of the amount
of perturbation, given a large enough sample size. Moreover, this lower bound can be stated in
terms of R2. (Theorem 5)

2 Materials and methods: main definitions

2.1 Definitions of MIC and the characteristic matrix
Given a finite set D of ordered pairs, we can partition the x-values of D into x bins and the y-values of D
into y bins, allowing empty bins. We call such a pair of partitions an x-by-y grid . Given a grid G, let D|G
be the distribution induced by the points in D on the cells of G; that is, the distribution on the cells of G
obtained by letting the probability mass in each cell be the fraction of points in D falling in that cell.

For a fixed D, different grids G result in different distributions D|G. To exploit this fact in defining MIC,
we first make the following definition.

Definition 2.1. For a finite set D ⊂ R2 and positive integers x, y, define

I∗(D,x, y) = max I(D|G)

where the maximum is over all grids G with x columns and y rows, and I(D|G) denotes the mutual infor-
mation of D|G.

We can now define the characteristic matrix and the MIC of D in terms of I∗.

Definition 2.2. The characteristic matrix M(D) of a set D of two-variable data is an infinite matrix with
entries

M(D)x,y =
I∗(D,x, y)

log min{x, y}
.

Definition 2.3. The Maximal Information Coefficient (MIC) of a setD of two-variable data with sample size
n and grid size less than B(n) is given by

MIC(D) = max
xy<B(n)

{M(D)x,y}.

where ω(1) < B(n) ≤ O(n1−ε) for some 0 < ε < 1.
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Remark 2.4. Unless specified otherwise, in this paper we use B(n) = n0.6, which we have found to work
well in practice. We discuss the role of B(n) further in Section 2.2.1.

Three elementary properties of MIC follow from properties of mutual information. First, since for an
x-by-y grid G, 0 ≤ I(D|G) ≤ log min{x, y}, all entries of the characteristic matrix fall between 0 and 1.
Second, the symmetry of mutual information (I(X;Y ) = I(Y ;X)) implies that the characteristic matrix
remains the same when the x- and y-values of D are interchanged. In follows that MIC falls between 0
and 1 and is symmetric. Third, since the distribution D|G depends only on the rank-order of the data, the
characteristic matrix is invariant under order-preserving transformations of the x- and y-values of D.

However, like the concept of statistical independence, MIC is not invariant under rotation of the coordi-
nate axes. For example, the plot of a slightly noisy diagonal line exhibits statistical dependence, but if the
diagonal line is rotated so that it is horizontal, the plot will exhibit statistical independence. Likewise, given
sufficient sample size, the former plot will have a non-zero MIC while the latter plot will have an MIC very
close to 0.

The space of grids that must be searched to compute each entry of the characteristic matrix grows expo-
nentially with the number of data points, so for efficiency we use a heuristic dynamic programming algorithm
to approximate MIC in practice; this algorithm is presented and discussed in Section 3.

2.2 Details of the definition of MIC
We now discuss in more detail two steps of the calculation of MIC: the parameter B(n), which controls how
much of the characteristic matrix we search over, and the normalization in the definition of I∗.

2.2.1 The maximal grid size B(n)

The function B(n) upper bounds the sizes of the grids we search over. Determining the appropriate choice
of B(n) is important: setting B(n) too high can lead to non-zero scores even for random data because each
data point gets its own cell, while setting B(n) too low means we are searching only for simple patterns. We
balance these competing considerations with a pair of proofs demonstrating that inflated scores are avoided
precisely when B(n) grows more slowly than n (see Theorems 1 and 2 in Section 6.2). In addition to this
theoretical work, we also conducted empirical tests to establish that B(n) = Θ(n) is an inflection point
above which statistically independent data receive scores bounded away from zero as sample size grows, and
below which they receive scores approaching zero; Figure S1 shows the results of these tests.

Our default setting forB(n) is n0.6, and all analyses carried out in this paper use this setting unless noted
otherwise.

2.2.2 Normalization

The optimal grids found for different sets of data need not have the same dimensions. For example, a line
can be captured perfectly by a two-by-two grid, but no two-by-two grid can perfectly capture a parabola.
This is problematic because grids with different dimensions have different maximal mutual information
scores: the maximal possible mutual information of a distribution on an x-by-y grid is log min{x, y} [38].
Thus, even once an optimal grid is found for the line and for the parabola, they will yield different mutual
information scores even though both are noiseless functions. Normalizing by log min{x, y} creates a score
that can be compared across grids with different dimensions and therefore across different distributions. It
also guarantees that almost all noiseless functions receive perfect scores (Theorem 3) and that the entries of
the characteristic matrix range from zero to one.

2.3 Definitions of additional statistics
Recall that the characteristic matrix M of a set of data D is defined by

M(D)x,y =
I∗(D,x, y)

log min{x, y}
,
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Figure S1: Empirical evidence demonstrating that B(n) = O(n1−ε) results in MIC scores approaching zero
for statistically independent data. Plots of MIC scores of single random clouds with different sample sizes
n using different numbers B(n) of bins. The scores depend only on the fraction B(n)/n. The red line
represents the value of B(n) corresponding in each case to B(n) = n0.6. The MIC score moves toward 0 as
n grows.
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Data MIC MAS

1.00 0.00 1.00 2.00

1.00 0.74 1.00 3.00

1.00 0.89 1.00 4.00

1.00 0.69 1.00 2.56

0.79 0.16 0.70 6.91

0.71 0.03 0.32 6.87

0.46 0.19 0.22 6.98

MEV MCN

Table S1: MINE statistics calculated for some sample associations. Intuitively, MIC captures relationship
strength; MAS captures departure from monotonicity; MEV captures closeness to being a function; and
MCN captures complexity. Note that the circle and the pair of lines do not receive perfect MIC scores. This
is because the scores of these associations approach 1 as sample size tends to infinity, while the table was
generated with only n = 1000. The circle with a line through the middle gets an even lower score because the
line is completely flat and so MIC considers it “noise” rather than “signal”. (The flat line by itself would have
an MIC of 0.) This is consistent with the requirement of nowhere flatness in Theorem 4. The characteristic
matrices for these relationships are shown in Figure S7.

where I∗(D,x, y) is the maximum mutual information achieved by any grid with x columns and y rows on
the data D. MIC is the maximum value of this matrix, but the matrix contains more information than just
its maximum value. We have developed a few other statistics which can be derived from the characteristic
matrix; further exploration of such properties of the characteristic matrix appears to be a promising area for
future research. Like MIC, these characteristics are unchanged when the x- and y-values of the data D are
swapped and when order-preserving transformations are applied to the x- or y-values.

Table S1 shows a few different patterns and their corresponding scores using these statistics.

• Non-monotonicity

The Maximum Asymmetry Score (MAS) is defined by

MAS(D) = max
xy<B

|M(D)x,y −M(D)y,x|

and measures deviation from monotonicity. MAS is never greater than MIC. For an illustration of the
intuition behind MAS, see Figure S2.

• Closeness to being a function

The Maximum Edge Value (MEV) is defined by

MEV(D) = max
xy<B

{M(D)x,y : x = 2 or y = 2}
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Figure S2: A demonstration of the intuition behind MAS. Left: A 4-period sinusoid shown with its optimal
8 × 2 grid (i.e. rows outnumber columns). This grid is only able to give a normalized score of 0.14. Right:
The same 4-period sinusoid shown with its optimal 2× 8 grid (i.e. columns outnumber rows). Because this
grid has the property that each column contains exactly one non-empty cell, it gives a normalized score of 1.
The reported MAS for this dataset is the difference between these scores: 0.86.

and measures the degree to which the dataset appears to be sampled from a continuous function. Like
MIC and MAS, it ranges from 0 to 1 with a score of 1 suggesting a well-behaved function. Like in the
case of MAS, we have MEV ≤MIC always.

The intuition behind MEV is that if a set of data points “passes the vertical line test”, in that for the
imagined underlying distribution each vertical line can contain only one point, it should have a close-
to-optimal grid with only 2 rows (see the proof of Proposition 6.14). Similarly we could consider a
horizontal line test. On the other hand, when the underlying distribution for the data points does not
pass either the vertical or hoirzontal line test, we have observed that the sampled datasets receive low
scores when the grids are restricted to having only 2 rows or only 2 columns, as one would expect.

• Complexity

The Minimum Cell Number (MCN) is defined by

MCN(D, ε) = min
xy<B

{log(xy) : M(D)x,y ≥ (1− ε)MIC(D)}

This statistic measures the complexity of the association, in terms of the number of cells required to
reach the MIC score. For example, a simple function like f(x) = x requires very few cells (four,
in fact) to grid in an effective way while a complex function such as f(x) = sin(18πx) requires
many (thirty-six) cells. The ε parameter provides robustness and should depend on the MIC of the
relationship in question. In Table S1, ε is set to 0 because the functions considered are noiseless. For
the more general case, something like ε = 1−MIC(D) may be a more appropriate parametrization.

2.4 Determining statisticial significance
Our null hypothesis is that the variables X and Y are statistically independent. We compute the p-value of a
given MIC score by selecting a probability α of false rejection, creating a set of 1/α− 1 surrogate datasets,
and comparing the MIC of the real data with the MIC scores of the surrogate datasets [39].

Since MIC depends only on the rank-order of the data, we can create a surrogate instance of the null
hypothesis for a given sample size by choosing a random permutation of Y with respect to X [40]. Since
this does not depend on the specific relationship being tested, we have created tables of the p-values of
various MIC scores at different sample sizes for public use. These are available at the MINE website:
exploredata.net.

In datasets where the number of tested variable pairs is large, it may be necessary to address the multiple
testing problem; in these cases, methods controlling the false discovery rate (FDR) are appropriate [41].
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Controlling FDR is better suited to our goal of identifying and scoring many significant relationships while
incurring a relatively low proportion of false positives than a more traditional Bonferroni correction, which
controls familywise error rate [41, 42]. Adopting this approach also has the advantage that calculating FDRs
at a reasonable resolution on very large datasets is computational feasible.

Unless noted otherwise, we controlled the FDR for all analyses using the Benjamini and Hochberg proce-
dure [41]. For additional clarity, we present q-values for each relationship from the main text. In our context,
the q-value of a relationship is the minimum FDR at which that relationship may be called significant [43].
These methods assume that all the hypotheses being tested are independent, an assumption which may not
hold, for instance, when we are testing many relationships from the same dataset. However, it turns out that
the Benjamini and Hochberg procedure works unchanged when the dataset satisfies a certain condition about
positive dependencies between the variables, and that when this condition is not satisfied, a simple correction
factor can be used [44].
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3 Materials and methods: the approximation algorithm for generat-
ing the characteristic matrix

In this section, we describe our algorithm for heuristically generating the characteristic matrix of a set of
two-variable data.

Remark 3.1. As noted in the main text, MIC is a rank-order statistic, meaning that if data are perturbed in a
way that does not change the relative ranks of the x- and y-values, the MIC of the data will not change. Our
approximation algorithm preserves this property since it effectively takes as input only the relative ranks of
the x- and y-values of the data.

3.1 Overview
3.1.1 The idealized algorithm

We begin by outlining an idealized algorithm for generating the characteristic matrix. Algorithm 1 represents
what we would use if efficiency were not a problem. Because we implement a heuristic approximation of
the MaxMI subroutine (called ApproxMaxMI), our implementation of Algorithm 1 is actually a heuristic
approximation of the characteristic matrix.

Algorithm 1 CharacteristicMatrix(D,B)

Require: D is a set of ordered pairs
Require: B is an integer greater than 3

1: for (x, y) such that xy ≤ B do
2: Ix,y ← MaxMI(D,x, y)
3: Mx,y ← Ix,y/min{log x, log y}
4: end for
5: return {Mx,y : xy ≤ B}

Line 3 is the normalization step discussed in Section 2.2.2. Using the scores returned by Algorithm 1,
MIC, MAS, and the other statistics are straightforward to calculate from their mathematical definitions.

3.2 The MaxMI subroutine
The MaxMI function invoked in Algorithm 1 is meant to return the highest mutual information attainable
using a grid with x columns and y rows on the data D. This is the portion of the procedure that we chose to
implement as a heuristic approximation algorithm using dynamic programming. Our implementation, which
we call ApproxMaxMI for clarity, can and should be replaced in the future if a method that efficiently finds
solutions that are closer to optimal or even optimal is developed.

3.2.1 The core of ApproxMaxMI: finding an optimal x-axis partition

The portion of ApproxMaxMI that uses dynamic programming is a function called OptimizeXAxis. Given a
fixed y-axis partition, OptimizeXAxis finds the x-axis partition that will lead to a grid with maximal mutual
information. Before we describe this function, we first put forth some notational conventions. We will then
prove the recursion behind the dynamic programming and present pseudocode for the function.

Preliminaries

We will assume that our set of ordered pairs D is sorted in increasing order by x-value. We denote
various partitions of the x-axis by specifying the indices of the endpoints of their columns. Specifically, we
will call an ordered list of integers 〈c0, . . . , ct〉 with c0 < c1 < · · · < ct an x-axis partition of size t of the the
(c0+1)-st through ct-th points ofD. Given a partitionC = 〈c0, . . . , ct〉 and an integer awith ci < a < ci+1,
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we let C ∪ a denote 〈c0, . . . , ci, a, ci+1, . . . , ct〉. If a = ci for some i, we define C ∪ a := C, and if a > ct,
we define C ∪ a := 〈c0, . . . , ct, a〉.

Since the datasetD is fixed for our purposes, we will abuse notation in the following way: given an x-axis
partition P of m points of D, we let H(P ) be the entropy of the distribution induced by those m points on
the columns of P . Similarly, H(P,Q) will denote the entropy of the distribution induced by those m points
in D on the cells of the grid formed by P and Q where Q is our (fixed) y-axis partition. We will use I(P ;Q)
analogously. Since Q is fixed just like D, H(Q) will always denote the entropy of the distribution induced
by all the points of D on the rows of Q.

Description of the OptimizeXAxis function

We begin by proving the recursion that underpins our dynamic programming algorithm. For any discrete
random vector (X,Y ), a standard definition of I(X;Y ) is I(X;Y ) = H(X)+H(Y )−H(X,Y ) whereH(·)
denotes Shannon entropy. This means that, using our notation, we have I(P ;Q) = H(P )+H(Q)−H(P,Q)
for all partitions P and Q. However, since Q is fixed, the OptimizeXAxis function need only maximize
H(P )−H(P,Q) over all partitions P in order to maximize I(P ;Q). Proposition 3.2 below establishes how
we will do so.

Proposition 3.2. Fix a y-axis partition Q and a dataset D of size n. For every m, ` ∈ [n], define F (m, `) =
max{H(P )−H(P,Q)} where the maximum is over all partitions of size up to ` of the first m points of D.
We have the following recurrence for ` > 1 and 1 < m ≤ n.

F (m, `) = max
1≤i<m

{
i

m
F (i, `− 1)− m− i

m
H(〈i,m〉, Q)

}
Proof. Let P = 〈0 = c0, . . . , c` = m〉 be an x-axis partition maximizing H(P ) − H(P,Q) as in the
definition of F . (We have assumed without loss of generality that P is of size exactly `.) Let #∗,j denote the
number of points in the j-th column of P and note that #∗,j = cj − cj−1. Define #i,j to be the number of
points in the i-th row of Q and the j-th column of P . Using this notation, we have

F (m, `) =
∑̀
j=1

#∗,j
m

log
m

#∗,j
−
∑̀
j=1

|Q|∑
i=1

#i,j

m
log

m

#i,j

=
∑̀
j=1

|Q|∑
i=1

#i,j

m
log

#i,j

#∗,j

=
`−1∑
j=1

|Q|∑
i=1

#i,j

m
log

#i,j

#∗,j
+

|Q|∑
i=1

#i,`

m
log

#i,`

#∗,`

=
c`−1

m

`−1∑
j=1

|Q|∑
i=1

#i,j

c`−1
log

#i,j

#∗,j
+

#∗,`
m

|Q|∑
i=1

#i,`

#∗,`
log

#i,`

#∗,`

=
c`−1

m
(H(P ′)−H(P ′, Q))− #∗,`

m
H(〈c`−1,m〉, Q)

=
c`−1

m
F (c`−1, `− 1)− m− c`−1

m
H(〈c`−1,m〉, Q)

where P ′ = 〈c0, . . . , c`−1〉 and the last line is because if H(P ′) −H(P ′, Q) did not equal F (c`−1, ` − 1)
then F (m, `) could be increased by choosing different values for c1, . . . , c`−1.

This establishes that F (m, `) is in the set { imF (i, `− 1) + m−i
m H(〈i,m〉, Q)}, and since F (m, `) must

be a maximal element of this set, we have the desired result.

Theorem 3.2 gives rise to a natural dynamic programming algorithm that builds up a table of values of
F and eventually returns F (n, `) where ` is the desired partition size. The function that carries out this
recursion, called OptimizeXAxis, is described in Algorithm 2.
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Our version of the OptimizeXAxis function restricts itself to drawing x-axis partition lines only between
runs of consecutive points that fall in the same row of the y-axis partition Q (called clumps). This increases
effiency without sacrificing optimality because no matter how a clump is split into columns, the contributions
of those columns to H(P ) − H(P,Q) will be 0. In Algorithm 2, the GetClumpsPartition subroutine is
responsible for finding the edges of clumps: it returns the minimal partition that separates every pair of
points that lie in distinct clumps.

Algorithm 2 OptimizeXAxis(D,Q, x)

Require: D is a set of ordered pairs sorted in increasing order by x-value
Require: Q is a y-axis partition of D
Require: x is an integer greater than 1
Ensure: Returns a list of scores (I2, . . . , Ix) such that each I` is the maximum value of I(P ;Q) over all

partitions P of size `.
1: 〈c0, . . . , ck〉 ← GetClumpsPartition(D,Q)
2:
3: {Find the optimal partitions of size 2}
4: for t = 2 to k do
5: Find s ∈ {1, . . . , t} maximizing H(〈c0, cs, ct〉)−H(〈c0, cs, ct〉, Q).
6: Pt,2 ← 〈c0, cs, ct〉
7: It,2 ← H(Q) +H(Pt,2)−H(Pt,2, Q)
8: end for
9:

10: {Inductively build the rest of the table of optimal partitions}
11: for ` = 3 to x do
12: for t = ` to k do
13: Find s ∈ {`− 1, . . . , t} maximizing

F (s, t, `) :=
cs
ct

(Is,`−1 −H(Q))− ct − cs
ct

H(〈cs, ct〉, Q)

14: Pt,` ← Ps,`−1 ∪ ct
15: It,` ← H(Q) +H(Pt,`)−H(Pt,`, Q)
16: end for
17: end for
18: Pk,` ← Pk,k for ` ∈ (k, x]
19: Ik,` ← Ik,k for ` ∈ (k, x]
20: return (Ik,2, . . . , Ik,x)

In Algorithm 2, each Pt,` is an optimal partition of size ` of the first t clumps of D, and It,` is defined
such that it will contain the corresponding mutual information when t equals the total number of clumps k.
The reason OptimizeXAxis returns an array of scores instead of just one is that, since we seek the maximal
scores for every possible number of columns, the entire array is useful. Note that the partitions Pt,` appear
in our pseudocode for clarity alone; only the scores It,` are actually used by the function.

3.2.2 Departures from optimality in the ApproxMaxMI algorithm

We now describe the two key features that both enable ApproxMaxMI to run in a reasonable amount of time
and make it a heuristic approximation.

Equipartitioning one axis
If, given some number x of columns and some number y of rows, we could run the OptimizeXAxis function
on every possible y-axis partition of size y, we would find an optimal grid. But the number of possible y-
axis partitions makes this infeasible. Therefore, since the mutual information is bounded from above by the
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entropy of the less informative axis and the marginal entropies of the axes are maximized by equipartitions1,
a natural heuristic approach to this problem is to consider only grids for which at least one axis is equiparti-
tioned. To this end, the ApproxMaxMI algorithm fixes an equipartition of size y on the y-axis and then runs
OptimizeXAxis. Later, ApproxMaxMI is called again but with the axes switched. The maximum of the two
scores obtained is used. Creating the equipartitions involves some tie-breaking when points have identical
y-values. This is carried out by the EquipartitionYAxis function, described in Algorithm 3.

Algorithm 3 EquipartitionYAxis(D, y)

Require: D is a set of n ordered pairs
Require: y is an integer greater than 1
Ensure: Returns a map Q : D → {1, . . . , y} such that Q(p) is the row assignment of the point p and there

is approximately the same number of points in each row
1: D ← SortInIncreasingOrderByYValue(D)
2: i← 1
3: currRow← 1
4: desiredRowSize← n/y
5: repeat
6: S ← {(aj , bj) ∈ D : bj = bi}
7: #← |{(aj , bj) ∈ D : Q(aj , bj) = currRow}|
8: if # 6= 0 and |# + S − desiredRowSize| ≥ |#− desiredRowSize| then
9: currRow← currRow + 1

10: desiredRowSize← (n− i+ 1)/(y − currRow + 1)
11: end if
12: Q((aj , bj))← currRow for every (aj , bj) ∈ S
13: i← i+ |S|
14: until i > n
15: return Q

Restricting the number of clumps

If k is the number of clumps created by a given y-axis partition Q of size y imposed on the dataset D,
the runtime of OptimizeXAxis(D,Q, x) is O(k2xy). This is often too much for large datasets, and so there
is one additional parameter to which ApproxMaxMI responds: a maximum number of clumps k̂ to allow
in its analysis. When k > k̂, the true clumps are merged into superclumps in a way that aims to have each
superclump contain approximately the same number of points. The algorithm then forgets about the clumps
and only considers drawing grid-lines between the superclumps. The parameter k̂ allows for a standard
efficiency vs. optimality tradeoff. It can be set high enough that k < k̂ always holds, but the algorithm seems
effective even when this condition is not met.

The subroutine that builds the superclumps, called GetSuperclumpsPartition, takes as input only a par-
tition describing the boundaries of the clumps and the parameter k̂. It uses the same logic as Equiparti-
tionYAxis (Algorithm 3), only it considers points in the same clump to be a unit rather than points with the
same y-value.

3.2.3 The complete ApproxMaxMI algorithm

We now give the pseudocode of the ApproxMaxMI algorithm. This is followed by the pseudocode for the
ApproxCharacteristicMatrix algorithm, which is slightly different from the outline given in Algorithm 1.
This is because, for a fixed number y of rows, OptimizeXAxis returns optimal partitions of size x for every
x. Additionally, the ApproxMaxMI algorithm calls the “ApproxOptimizeXAxis” function. This function is

1An equipartition is a partition into either rows or columns such that each row/column contains the same number of points
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identical in every way to OptimizeXAxis (described in Algorithm 2) except that it takes as an argument the
maximum number k̂ of superclumps and calls GetSuperclumpsPartition instead of GetClumpsPartition.

We thank Diomidis Spinellis for helping clarify and debug the pseudocode in this section.

Algorithm 4 ApproxMaxMI(D,x, y, k̂)

Require: D is a set of ordered pairs
Require: x, y, and k̂ are integers greater than 1
Ensure: Returns a set of mutual information scores (I2,y, . . . , Ix,y) such that Ii,j is heuristically close to

the highest achievable mutual information score using i rows and j columns.
1: Q← EquipartitionYAxis(D, y)
2: D ← SortInIncreasingOrderByXValue(D)

3: return ApproxOptimizeXAxis(D,Q, x, k̂)

Algorithm 5 ApproxCharacteristicMatrix(D,B, c)

Require: D = {(a1, b1), . . . , (an, bn)} is a set of ordered pairs
Require: B is an integer greater than 3
Require: c is greater than 0

1: D⊥ ← {(b1, a1), . . . , (bn, an)}
2: for all y ∈ {2, . . . , bB/2c} do
3: x← bB/yc
4: (I2,y, . . . , Ix,y)← ApproxMaxMI(D,x, y, cx)
5: (I⊥2,y, . . . , I

⊥
x,y)← ApproxMaxMI(D⊥, x, y, cx)

6: end for
7: for (x, y) such that xy ≤ B do
8: Ix,y ← max{Ix,y, I⊥y,x}
9: Mx,y ← Ix,y/min{log x, log y}

10: end for
11: return {Mx,y : xy ≤ B}
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4 Materials and methods: creation of figures
In this section, we describe how we generated each of the figures in the main text, and how we analyzed the
data sets.

4.1 Command-line arguments used for analyses
All analyses carried out throughout the paper used MINE’s default arguments except for in the cases noted
below. (For descriptions of these arguments, see Section 5.)

• Figures 2B and S4 (MIC on noisy functional relationships): c = 75

• Figure 4A-G (WHO dataset): exp = 0.65, cv = 0.25

• Figure 4I (WHO dataset): exp = 0.70

• Figure S10 (WHO spring graph): exp = 0.65, cv = 0.5

• Figure 5 (Gene expression): exp = 0.67, cv = 1.0

• Figure 6 (Microbiome dataset): exp = 0.551, c=10

• Major League Baseball statistics: exp = 0.7, cv = 0.25

• Comparison of MAS, Spearman test, Fisher test, and Ahdesmaki et al. statistic: c = 25

4.2 Analysis for Figure 2A (performance on noiseless functional relationships)
For each function f listed in Table S2, we generated a data series Df containing 320 points evenly spaced
along the curve described by f . We then ran each of the statistics in the table on each Df , and reported
the scores. (For the CorGC method of Delicado [19], we multiplied all x-values by 100 before running the
method, as in Figure 2F, because we found this to lead to more accurate estimates of the principal curves of
the data.)

For the random cloud, we calculated the scores of 1000 independent realizations of 320 points chosen
uniformly at random from the unit box, and reported the average.

Relationship Name Description (The domain is [0, 1] for all functions.)
Linear y = x
Parabolic y = 4(x− 1

2 )2

Cubic y = 128(x− 1
3 )3 − 48(x− 1

3 )2 − 12(x− 1
3 ) + 2

Exponential y = 1010x − 1
Linear/Periodic y = sin(10πx) + x
Sinusoidal (Fourier Frequency) y = sin(16πx)
Sinusoidal (non-Fourier Frequency) y = sin(13πx)
Sinusoidal (Varying Frequency) y = sin(7πx(1 + x))
Categorical 64 points chosen from the following set:

{(1, 0.287), (2, 0.796), (3, 0.290), (4, 0.924), (5, 0.717)}
Random random number generator

Table S2: Definitions of the functions analyzed in Figure 2A.
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4.3 Analysis for Figures 2B-F, and Figures S3 and S4 (performance on noisy func-
tional relationships)

Each relationship S listed in Table S4 consists of a function fS described in Table S3 and a sample size nS
given in parentheses. For each relationship S, we generated a data series DS

0 of nS points spaced evenly
along the curve described by fS . We then created 249 additional data series {DS

i : 0 < i < 250} by adding
incrementally larger amounts of uniform vertical noise to DS

0 .
For each relationship S, we calculated, for all i,

1. The R2 between DS
i and DS

0

2. The MIC of DS
i

3. The Spearman correlation coefficient of DS
i

4. The mutual information of DS
i

5. The mean-squared error (MSE) between DS
i and the estimated principal curve2 of DS

i

6. CorGC(DS
i ), where CorGC is the principal curve-based measure of non-linear dependence due to

Delicado and Smrekar [19]. Prior to running the method, x-values were all multiplied by 100 because
this was found to lead to more accurate estimates of the principal curves of the data.

7. The maximal correlation, as calculated by the method of alternating conditional expectations [15], of
DS
i

8. The distance correlation [21] of DS
i

[Principal curves for (5) and (6) were estimated using the Hastie-Stuetzle algorithm (princurve R pack-
age) with default parameters [45]. Alternative algorithms from [46] and [18] yielded similar results.]

Figure 2B is a plot of (2) against (1) for all relationships S;
Figure 2C is a plot of (3) against (1) for all relationships S;
Figure 2D is a plot of (4) against (1) for all relationships S;
Figure 2E is a plot of (7) against (1) for all relationships S;
Figure 2F is a plot of (6) against (1) for all relationships S;
Figure S3A is a plot of (5) against (1) for all relationships S;
Figure S3B is a plot of (8) against (1) for all relationships S.
Figure S4 contains versions of Figures 2B and 2D generated with other sample sizes and methods of

adding noise (choosing points to be evenly spaced along the x-axis, adding horizontal as well as vertical
noise, etc.).

4.4 Analysis for Figure 2G (MIC on selected non-functional associations)
For each relationship type S in Figure 2G, a “noiseless” instance DS

0 was generated with a sample size of
10, 000. (For example, for the relationship that looks like an X, half of the points were chosen from the set
{(x, x)} and the other half were chosen from the set {x, 1 − x} with x values evenly spaced in the interval
[0, 1] in both cases.) For each S, 199 additional data series {DS

i : 0 < i < 200} were created by adding
incrementally larger amounts of independent uniform horizontal and vertical noise to DS

0 .
MIC was run on all the setsDS

i . For each S, four elements were chosen from the set {DS
i : 0 ≤ i < 200}:

one with an MIC of 0.8, one with an MIC of 0.65, one with an MIC of 0.5, and one with an MIC of 0.35.
These datasets are the ones displayed in the table.

2It is not clear how to calculate R2 relative to a principal curve since the curve is not always a function and may not be defined at all
the x-values in the data; therefore MSE was used in lieu of an alternative obvious choice. Data were normalized such that projections
onto either axis had unit variance to aid comparison of MSEs across different distributions.
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Function Name Definition
Linear+Periodic, Low Freq y = 1

5 sin(4(2x− 1)) + 11
10 (2x− 1) x ∈ [0, 1]

Linear+Periodic, Medium Freq y = sin(10πx) + x x ∈ [0, 1]
Linear+Periodic, High Freq y = 1

10 sin(10.6(2x− 1)) + 11
10 (2x− 1) x ∈ [0, 1]

Linear+Periodic, High Freq 2 y = 1
5 sin(10.6(2x− 1)) + 11

10 (2x− 1) x ∈ [0, 1]
Non-Fourier Freq [Low] Cosine y = cos(7πx) x ∈ [0, 1]
Cosine, High Freq y = cos(14πx) x ∈ [0, 1]
Cubic y = 4x3 + x2 − 4x x ∈ [−1.3, 1.1]
Cubic, Y-stretched y = 41(4x3 + x2 − 4x) x ∈ [−1.3, 1.1]

L-shaped y =

{
x/99 if x ≤ 99

100

99x− 98 if x > 99
100

x ∈ [0, 1]

Exponential [2x] y = 2x x ∈ [0, 10]
Exponential [10x] y = 10x x ∈ [0, 10]
Line y = x x ∈ [0, 1]
Parabola y = 4x2 x ∈ [− 1

2 ,
1
2 ]

Random random number generator x ∈ [0, 1]
Non-Fourier Freq [Low] Sine y = sin(9πx) x ∈ [0, 1]
Sine, Low Freq y = sin(8πx) x ∈ [0, 1]
Sine, High Freq y = sin(16πx) x ∈ [0, 1]

Sigmoid y =


0 if x ≤ 49

100

50(x− 1
2 ) + 1

2 if 49
100 ≤ x ≤

51
100

1 if x > 51
100

x ∈ [0, 1]

Varying Freq [Medium] Cosine y = cos(5πx(1 + x)) x ∈ [0, 1]
Varying Freq [Medium] Sine y = sin(6πx(1 + x)) x ∈ [0, 1]

Spike y =


20x if x < 1

20

−18x+ 19
10 if 1

20 ≤ x <
1
10

−x9 + 1
9 if x ≥ 1

10

x ∈ [0, 1]

Lopsided L-shaped y =


200x if x < 1

200

−198x+ 199
100 if 1

200 ≤ x <
1

100

− x
99 + 1

99 if x ≥ 1
100

x ∈ [0, 1]

Table S3: Definitions of the functions used in Figures 2B-F and Figures S3 and S4.

0
0.2
0.4
0.6
0.8

1

00.20.40.60.81

M
IC

Noise�(R2)

MIC�vs�R2:�Noise�Model�2

0
0.2
0.4
0.6
0.8

1

00.20.40.60.81

M
IC

Noise�(R2)

MIC�vs�R2:�Noise�Model�2

Linear+Periodic,Low�Freq�(1000) Linear+Periodic,High�Freq�(1000) Linear+Periodic,High�Freq�2�(1000)

Linear+Periodic,Medium�Freq�(1000) Linear+Periodic,Medium�Freq�(500) Non�Fourier�Freq�[Low]�Cosine�(1000)

Non�Fourier�Freq�[Low]�Cosine�(250) Cosine,�High�Freq�(1000) Cosine,�High�Freq�(500)

Cubic�(1000) Cubic,�Y�Stretched�(1000) L�Shaped�(1000)

Exponential�[2^x]�(1000) Exponential�[10^x]�(1000) Line�(1000)

Parabola�(1000) Random�(1000) Non�Fourier�Freq�[Low]�Sine�(1000)

Sine,�Low�Freq�(250) Sine,�High�Freq�(1000) Sigmoid�(1000)

Varying�Freq�[Medium]�Cosine�(1000) Varying�Freq�[Medium]�Sine�(1000) Varying�Freq�[Medium]�Sine�(500)

Spike�(1000) Lopsided�L�Shaped�(1000) Lopsided�L�Shaped�(500)

Table S4: The relationships analyzed in Figures 2B-F. Sample sizes are indicated next to each function type
in parentheses. For definitions of the functions, see Table S3.
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Remark 4.1. Note that the relationship called “non-coexistence” is not a plot of two statistically independent
variables with skewed distributions. Rather, it is a superposition of two random clouds that are scaled in a
way that imitates a situation in which, for instance, the presence of one gene de-activates another, or one
bacterium suppresses another.

This figure is also included in the SOM as Figure S6A.

4.5 Analysis for Figure 3 (visualizations of characteristic matrices)
For each of the functions in Table S5, we generated a data series of 16,700 points and computed its charac-
teristic matrix using MINE. Due to space limitations, we only visualize the matrices for the range (1 < x ≤
30, 1 < y ≤ 30); in fact, analyzing 16,700 data points using B(n) = n0.7 gives up to 16, 7000.7 = 903 cells
in a gridding, allowing the characteristic matrix to have entries, for example, at (x = 450, y = 2).

Relationship Name Description (x ∈ [0, 1] for all functions)
Linear y = x
Parabolic y = 4(x− 1

2 )2

Sinusoidal (Varying Frequency) y = sin(6πx(1 + x))
Categorical 200 points chosen from the following set:

{(1, 0.287), (2, 0.796), (3, 0.310), (4, 0.924), (5, 0.717)}
Circle {(cos t, sin t) : t ∈ [0, 2π]}
Random random number generator

Table S5: Definitions of the functions used for Figure 3.

4.6 Analysis for Figure 4 (WHO global indicators dataset)
We obtained two datasets, one from the World Health Organization Statistical Information Systems (WHO-
SIS) website [7], and one from the Gapminder website [25]. These two databases were joined on the ‘Coun-
try’ variable and countries with data in only one of the two datasets were thrown out. For each country, for
each indicator, the data for the time period 1995-2005 was aggregated; only the most recent value from the
time period was used. The resulting dataset had 357 global indicators for 202 countries around the world,
from 1960 through 2005. This dataset was analyzed using MINE, the Pearson correlation coefficient, and
the Kraskov et al. mutual information estimator [14].

The results of the MINE analysis were examined by sorting both by MIC and by the quantity MIC− ρ2.
Table S6 lists the ranks, uncorrected p-values, and q-values of the relationships in parts C-H of Figure 4. A
false discovery rate of 5% was used under a null hypothesis of statistical independence to determine which
relationships were significant according to each method. The lines of best fit for the relationships in parts
C-H of Figure 4 were generated manually using regression on each trend.

The non-linear associations identified using MIC−ρ2 could not be detected as easily—or in some cases at
all—using other methods. The Pearson correlation coefficient did not work because it does not differentiate
between highly non-linear associations and unrelated variable pairs. Mutual information estimators did not
work either: because the scores they assign do not roughly equal R2 (as the MIC scores do), there is no
natural analogue for MIC−ρ2 using these statistics. Both Kraskov−ρ2 as well as Kraskov− K̄ρ2 where K̄
is the highest mutual information score in the dataset were tried, and neither detected the relationships found
using MIC − ρ2. Presumably, the preference of these methods for linear relationships, as discussed in the
main text (see Figure 2), also contributes to the difficultly of using them to identify non-linear relationships.

Table S9 shows the top 1% of relationships by MIC from an abbreviated version of the global indicators
dataset. This modified dataset only includes 114 of the less redundant variables from the larger dataset. The
variables in the modified dataset were chosen by separating the variables from the full dataset into groups of
closely related (redundant) variables, and choosing one representative from each each group. The represen-
tative was the variable that was involved in the most relationships out of the top 1/3 of all relationships.
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Relationship rankMIC rankMIC−ρ2 rankMI rankρ pMIC qMIC

C 49136 - 42989 33998 1 -
D 2379 - 3418 1106 1.54× 10−7 1.02× 10−6

E 1146 7 5303 33022 1.54× 10−7 1.02× 10−6

F 9655 942 5363 43427 9.23× 10−7 1.02× 10−6

G 5986 393 9251 31119 5.38× 10−4 1.02× 10−6

H 120 - 183 874 1.54× 10−7 1.02× 10−6

Table S6: Ranks, uncorrected p-values, and q-values of relationships in Figure 4C-H. (The q-value of a
relationship is the minimum false discovery rate at which that relationship may be called significant.)

Relationship pMIC qMIC

C < 2.3× 10−8 1.4× 10−6

D < 2.3× 10−8 1.4× 10−6

E < 1.1× 10−3 4.3× 10−2

F < 2.3× 10−8 1.4× 10−6

G < 2.3× 10−8 1.4× 10−6

Table S7: P-values (uncorrected) and q-values of relationships from Figure 5C-G. (The q-value of a relation-
ship is the minimum false discovery rate at which that relationship may be called significant.)

Tables S10 and S11 list specific countries that follow the minority trend in Figures 4F and 4H.

4.7 Analysis for Figure 5 (gene expression dataset)
We analyzed the cdc15 expression data from Spellman et al. (1998) [26]. The sampling time in this dataset
was not always equidistant. As in [24], we considered the missing sampling times as missing values, and
then used linear interpolation to fill in any missing value for which both adjacent time points did have (non-
interpolated) data. We also removed the first and last three time-points, interpolated or not, for each gene, as
they consistently appeared unrelated to the rest of each respective time series. The resulting data file had 23
time-points.

We ran MINE on this file, telling it to compare each time series against time (rather than compare the
time series against each other) and then merged the scores obtained by Spellman et al. with the results. (Note
that because we used the MINE parameter cv=1.0, only genes with no missing timepoints after truncation
and interpolation were analyzed. There were 4381 genes meeting this criterion.) A false discovery rate of 5%
was used under a null hypothesis of statistical independence to determine which relationships had significant
MIC scores. Table S7 contains uncorrected p-values as well as q-values of the relationships highlighted in
Figure 5.

Note: our comparison of MINE against the other methods discussed in the main text on this dataset
was limited in the following ways: [26] did not determine a threshold of statistical significance but rather
heursitically set a threshold based on the scores of genes known to be periodic; [22] did not correct for
multiple testing; and [24] made publicly available only the top third of the genes found to be statistically
significant.

4.8 Analysis for Figure 6 (microbiome dataset)
We obtained a dataset of bacterial abundance levels for 6,696 species-level operational taxonomic units
(OTU’s) in humanized mice (n = 675 readings). For each reading, the dataset also contained the donor
microbiota (fresh human fecal sample, frozen human fecal sample, or ‘second generation’ transfer from a
humanized mouse donor), the sex of the host mouse, the diet fed to the host mouse, the collection method
of the sample (luminal contents or mucosal scraping), as well as the location of sampling along the gastroin-
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testinal tract (stomach, small intestine, cecum, colon, or feces) [29]. We ran MINE on this dataset, asking
it to compare all the variables against each other. Due to the large number of comparisons, false discovery
rates were calculated directly from an empirical null distribution rather than from uncorrected p-values [43].
The relationships deemed significant were those with FDRs below 5%.

The threshold of 0.2 for the non-linearity score MIC−ρ2 was chosen heuristically based on identification
of a long tail in the distribution of non-linearity scores, as well as visual inspection of several plots with a
range of non-linearity scores around the beginning of this tail. As in the case of the WHO data, the non-linear
relationships found using MIC − ρ2 could not be detected as easily using existing methods because these
methods give certain association types higher scores than others (see Section 4.6).

We used the following heuristic A to determine which relationships were affected by each auxiliary
variable: given a set of abundance data for two OTUs D, we partition D into disjoint sets D1, . . . , Dk, one
for each value of the auxiliary variable. For example, D1 might be the data points for which the diet is
western and D2 the data points for which the diet is LFPP. For each Di, we then calculated the average
Euclidian distance ∆i from the point (xi, yi) where xi was the median x-value in Di and yi was the median
y-value. We set

A =
∑
i

|Di|
|D|

∆i.

The heuristic A was calculated for a given relationship, and then calculated on 1,000 instances of the null
hypothes consisting of an identical dataset in which each data point was randomly assigned to a set Di in a
manner that preserved the original sizes of the Di. A relationship in which the value of A was greater than
95% of the scores obtained by the instances of the null hypotheses were said to be affected by the auxiliary
variable in question.

Of the top 500 non-linear relationships, 312 were found to be affected by one or more auxiliary variables:
135 by host diet, 103 by host sex, 202 by the identity of the human donor, 161 by collection method, and 143
by location in the gastrointestinal tract.

Of the relationships with statistically significant MIC scores, the top 300 relationships by non-linearity
score were placed in a spring graph similar to the graph constructed for the WHO data (see Section 4.10).

We developed a stricter heursitic to identify relationships, such as the relationship in Figure 6A, that
appear almost entirely explained by diet. We called a relationship between two OTUs (call them X and Y )
explained by diet if it met the following criteria:

• The heuristic A identified the relationship as being affected by diet.

• Both X and Y individually were statistically significantly related to diet according to MIC.

• The mean abundance level of X under the western diet was higher than that of Y under the western
diet and the reverse was true was under the LFPP diet, or vice versa.

The motivation behind this heuristic was that we were trying to identify relationships in which one strain is
suppressed under the western diet and the other strain is suppressed under the LFPP diet.

Table S13 contains a list of the 77 relationships out of the top 500 non-linear relationships that this stricter
heuristic found to be almost entirely explained by diet.

Table S14 contains a list of the 188 relationships out of the top 500 non-linear relationships that the
heuristic A indicated were not affected by any auxiliary variable.

4.9 Analysis of Major League Baseball statistics from 2008 season
We downloaded the salaries of Major League Baseball players for the 2008 season from The Baseball Archive
[28], and the collection of 131 other offensive statistics for all players for the 2008 season from Baseball
Prospectus [27]. We joined the two databases on ‘Player Name’, and took the following pre-processing
steps:

• We removed all players with fewer than 40 plate appearances.
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Relationship pρ qρ
salary vs. walks < 7.6× 10−7 7.8× 10−7

salary vs. intentional walks < 7.6× 10−7 7.8× 10−7

salary vs. RBI < 7.6× 10−7 7.8× 10−7

Relationship pMIC qMIC

salary vs. hits 5.6× 10−4 3.6× 10−2

salary vs. total bases 1.1× 10−3 4.2× 10−2

slaray vs. RPMLV 3.8× 10−4 3.6× 10−2

Table S8: P-values (uncorrected) and q-values of relationships from Major League Baseball dataset. (The
q-value of a relationship is the minimum false discovery rate at which that relationship may be called signif-
icant.)

• We removed all pitchers because we were examining relationships between salary and offensive statis-
tics, and pitchers are primarily paid for their defensive, rather than offensive, production. (Note: this
applied almost exclusively to National League pitchers, as most American League pitchers were al-
ready removed for having fewer than 40 plate appearances.)

• Because we were looking for relationships between salary and offensive statistics, we removed all
players who were forced to earn approximately the Major League minimum (salary < 400, 000 USD).
These players were not eligible for free agency (due to having just joined the Major Leagues) and were
thus paid a fixed salary that was not based on performance.

We calculated the MIC as well as the Pearson correlation coefficient of all relationships between salary
and another variable. A false discovery rate of 5% was used under a null hypothesis of statistical inde-
pendence to determine which associations were significant according to each method. Table S12 lists the 50
variables most closely related to salary according to MIC. Figure S12 shows a few of the strongest non-linear
distributions identified by MIC, as well as a few of the distributions of the strongest correlates with salary
according to ρ. Table S8 contains uncorrected p-values, as well as q-values of the relationships mentioned in
the main text.

4.10 Analysis for Figures 6E and S10 (interactive spring graphs)
To enable an intuitive and efficient interpretation of how the different variables in a dataset are related to each
other, we developed a graph visualization tool based on common techniques [47], which can be applied to
the results of our analysis to create an interactive visualization of datasets that we call a spring graph.

In a spring graph, the variables in the data set are represented by nodes, and the relationships between
them are represented by edges. The graph is a dynamic physical equilibrium based on a Hookean spring
model, which is governed by forces that vary in proportion to either the MIC or the other characteristics of
relationships between variables. Thus, every aspect of the spring system between nodes is dependent on one
of the properties of the characteristic matrix generated by MINE, allowing the user to examine several of
these properties simultaneously. To determine the layout of the nodes, numerical integration of these forces
is employed until the dynamics converge to one of many potential stable equilibria [48]. User-controlled
perturbations can be applied in an attempt to identify lower energy equilibria. It is important to note that
while this may be a useful exploratory tool, this visualization could exhibit degenerate energy landscapes
and that the particular arrangement of any non-trivial number of vertices in two-dimensional space will
contain some artifactual structure relative to the global minimum energy landscape.

Users can interact with this graph by adding or removing variables or relationships between variables and
seeing how the physical model reacts to these changes. For example, a user can create a spring graph that
contains only a few variables (nodes) and relationships (edges), and can progressively add more relationships
into the graph, to see how the physical equilibrium shifts. The Spring Graph is intended to make groups of
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interrelated variables immediately obvious and therefore easy for the investigator to pick out of a huge initial
list of variables and relationships.

Figure S10 is a screenshot of an interactive Spring Graph generated from the output of the MINE analysis
of the global indicators dataset. The graph depicted is the largest connected component (100 edges) that
emerges when the top 450 relationships in this dataset (ranked by MIC) are added sequentially. For ease of
display, redundant variables have been removed (for example, only one of the under-five mortality rates from
the several reporting institutions was kept). In this example, variables were clustered only by MIC—spring
equilibrium length, edge thickness, and coloring are all proportional to MIC score. (The shorter the spring
equilibrium length and thicker the edge, the higher the MIC score; the more red a region, the more tightly
correlated the variables in it, relative to the rest of the graph, while the more blue a region is, the less tightly
correlated the variables in it are relative to the rest of the graph.)

Figure 6E is a screenshot of an interactive Spring Graph generated from the MINE analysis of the mi-
crobiome dataset, and includes the 300 most non-linear relationships out of all relationships with significant
MIC scores. Again, the equilibrium length of each spring is inversely proportional to MIC score; the size of
each node is proportional to the number of these relationships in which a given OTU is found; and the color
of the node is proportional to fraction of relationships involving that node that are explained by diet. Black
edges represent relationships explained by diet.
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5 How to use MINE
MINE is written in Java can be downloaded as a JAR from exploredata.net. The only mandatory
parameters are the name of the file containing the data and a specification of which variable pairs to analyze.
It is invoked as follows:

java -jar MINE.java infile style

The mandatory parameters may be set as follows

• infile : A path to a comma-separated values (csv) file containing the data. The variable names can
either be in the first line of the file (making each row a record), or the first column in the file (making
each column an entry). The name of the file must end in ‘.csv’.

• style : This option tells MINE which variable pairs to analyze. The value ‘-allPairs’ will cause MINE
to compare all pairs of variables against each other; ‘-adjacentPairs’ will compare consecutive pairs
of variables only; ‘-masterVariable i’ or ‘i’ will compare all variables only against the i-th variable;
‘-onePair i j’ or ‘i j’ will compare only the i-th variable to the j-th variable; ‘-pairsBetween i’ will
compare each of the first i variables to each of the rest of the variables. Variables are indexed from 0.

In addition, the following optional parameters/flags are provided

• cv : A floating point number indicating which percentage of the records need to have data in them for
both variables before those two variables are compared. Default value is 0.

• exp : The exponent in the equation B(n) = nα. Default value is 0.6.

• c : Determines by what factor clumps may outnumber columns when OptimizeXAxis is called. When
trying to partition the x-axis into x columns, the algorithm will start with at most cx clumps. Default
value is 15.

• notify : The number of variable pairs to analyze before printing a status message. Default value is 100.

• gc : The number of variable pairs to analyze before forcing a Java garbage collection. This should not
be necessary unless sample size is very small and there are very many variable pairs. Default value is
Integer.MAX VALUE.

• jobID : A string to identify this job. The program will produce two files; one is called [infile] ,[jo-
bID],Results.csv, and the other is called [infile],[jobID],Status.txt (always contains the name of the
variable being analyzed). The default jobID is B=nˆ[exp],k=[c]x[-permute].

5.1 Example
java -jar MINE.jar "path/to/data.txt" 0 cv=0.1 exp=0.6 c=10 fewBoxes

This will run MINE on the file located at ‘path/to/data.txt’. The only variable pairs that will be analyzed
are the first variable against the rest of the variables. Also, a variable pair will be ignored if less than 10% of
the records have values for both the variables in question. The program will use B(n) = n0.6 and will have
the maximal number of clumps allowed be k = 10x when attempting to draw a grix with x columns. Two
output files will be created:

• ‘path/to/data.txt,fewBoxes,Results.csv’, which contains the results of the analysis, and

• ‘path/to/data.txt,fewBoxes,Status.txt’, which contains the name of the variable being analyzed while
MINE runs.
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6 Proofs about MIC
In this section, we prove the following statements from the main text:

• The MIC of data sampled from a distribution (X,Y ), whereX and Y are continuous random variables,
converges in probability to 0 as sample size grows if and only if X and Y are statistically independent.
(Theorem 1)

• The MIC of data sampled from a distribution (X, f(X)), where X is a continuous random variable
and f is a nowhere-constant function, converges to 1 almost surely as sample size grows. (Theorem 3)

• More generally, the MIC of data sampled from a finite union of images of nowhere-flat, nowhere-
vertical differentiable curves converges to 1 almost surely as sample size grows. (Theorem 4)

• For any nowhere-constant function, a set of points drawn from the curve defined by the function and
then vertically perturbed will receive an MIC that is lower bounded almost surely in terms of the
amount of perturbation, given a large enough sample size. Moreover, this lower bound can be stated
in terms of R2. (Theorem 5)

We also show that the restriction in the definition of MIC (Definition 2.3) that the maximal number of
grid cells B(n) grow no faster than n1−ε for some 0 < ε < 1 is necessary in the sense that without this
condition data drawn from (X,Y ) with X and Y statistically independent will achieve non-trivial scores
with high probability. (Theorem 2)

6.1 Preliminaries
There are a few lemmas and definitions that we will use in many of the proofs in this section. The first is the
following multiplicative Chernoff bound, which we state without proof. (It appears in many standard texts;
see, e.g. [Corollary 4.6] of [49].)

Lemma 6.1 (Multiplicative Chernoff Bound). Let X1, . . . , Xn be independent random variables that each
equal 1 with probability p and 0 otherwise. Then for every 0 < ε ≤ 1 we have

Pr
[∣∣∣∑Xi − pn

∣∣∣ ≥ εpn] ≤ 2−Ω(pnε2)

The next lemma states that if a grid is imposed on a set of points sampled from some prior distribution
and each cell contains approximately the expected number of points then the measured mutual information
will be close to the mutual information of the distribution.

Lemma 6.2. Let G be a grid with B cells imposed on a set D of n points in [0, 1] × [0, 1]. Given some
probability distribution (X,Y ) on the cells of G, define εi,j to be the difference between the fraction of
points in the i, j-th cell of G and the probability of choosing that cell from the distribution (X,Y ). Define
εi,∗ for the i-th row and ε∗,j for the j-th column analogously. We have

|I(D|G)− I(X;Y )| ≤ B

2n
+
∑
i

O(εi,∗
3 + ε∗,i

3) +
∑
i,j

O(εi,j
3)

Proof. See Equations 10, 11, 12, 13, 26, and 27 in [50].

The following lemma gives the mutual information of a distribution on a grid in terms of the average of
the entropies of the columns making up the grid. Before stating it we will develop some notation that will
be useful later in this section: for a distribution D on the cells of a grid G, let H(D) denote the Shannon
entropy of D; let HY (D) denote the Shannon entropy of the marginal distribution on the rows of G and
define HX(D) analogously; let HY

j (D) denote the Shannon entropy of the distribution on the rows of G
induced only by the probability mass in the j-th column, and similarly let HX

i (D) denote the corresponding
based on the distribution of the columns of G; let p(·, ·) be the probability mass function of D; and let pX
and pY be the marginal probability mass functions of p.
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Lemma 6.3. Let D be a distribution on the cells of a grid G with y rows and x columns. We have that

I(D) = HY (D)−
x∑
j=1

pX(j)HY
j (D)

Proof. The lemma follows from the fact that for two jointly distributed random variablesX and Y , I(X;Y ) =
H(Y )−H(Y |X). If we let Y be the marginal distribution on the rows of G and X the marginal distribution
on the columns of G, then the I(X;Y ) term becomes I(D) and H(Y ) = HY (D). What does the H(Y |X)
term equal? We know that H(Y |X = j) equals HY

j (D). Thus,

H(Y |X) = EX [H(Y |X)] =

x∑
j=1

pX(j)HY
j (D)

which gives the result.

We now define a few simple terms. Recall that an equipartition is a partition into either rows or columns
such that each row/column contains the same number of points. Since the mutual information of a distribution
is upper-bounded by the minimum of the Shannon entropies of the marginal distributions, we will often be
concerned with whether we are able to make our grids such that the axis with fewer rows/columns can
be partitioned in a way that is close to an equipartition. For this reason, we will need the following two
definitions.

Definition 6.4. A finite set S ⊂ R is (m,α)-partitionable if it can be partitioned into at most m bins such
that the discrete random variable induced on the bins has Shannon entropy at least α logm.

Definition 6.5. A finite set S ⊂ R is m-equipartitionable if it is (m, 1)-partitionable.

For example, every even-sized set of distinct numbers is 2-equipartitionable. Ifm does not divide the size
of a set of distinct numbers, then the set will not be m-equipartitionable. However, our final lemma shows
that this effect is negligible.

Lemma 6.6. For every m ∈ N and every 0 < ε ≤ 1, and for sufficiently large n, every set of n distinct
numbers is (m, 1− ε)-partitionable.

6.2 MIC approaches 0 if and only if X and Y are statistically independent
We now show that because ω(1) < B(n) ≤ O(n1−ε) in the definition of MIC, the MIC of data sampled
from a distribution (X,Y ) converges in probability to 0 if and only if X and Y are statistically independent.
This is done in Section 6.2.1 and Section 6.2.2, whose main results give us the following theorem. (In one
direction, the theorem is only proven for our heuristic approximation of MIC.)

Theorem 1. Let D be a set of n independent samples from a distribution (X,Y ) over [0, 1] × [0, 1] where
X and Y are continuous random variables. The following statements hold:

1. If X and Y are statistically independent, ApproxMIC(D) converges to 0 in probability as n→∞.

2. If X and Y are not statistically dependent, there exists a constant ζ > 0 such that MIC(D) ≥ ζ for
sufficiently large n almost surely.

Proof. The result follows from Proposition 6.8 and Proposition 6.12.

After proving Proposition 6.8 and Proposition 6.12, we will show that our constraint on B(n) in the
definition of MIC is tight in the sense that if we instead used B(n) = Ω(n1+ε) then statistically independent
points would almost surely have MICs of 1. This is done in Section 6.2.3.
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6.2.1 MIC is bounded away from 0 almost surely for statistically dependent data

To prove that MIC is bounded away from 0 for statistically dependent data, will need the fact that if two
variables each taking values in [0, 1] are not statistically independent then there exists a two-by-two grid
such that the joint distribution induced on the cells of the grid by the probability mass in each cell has
non-zero mutual information. This is stated in the following lemma.

Lemma 6.7. Let X and Y be random variables each taking values in [0, 1]. For any α ∈ [0, 1], define
χα : [0, 1]→ {0, 1} to be 0 on the interval [0, α) and 1 on the interval [α, 1]. Then if I(χa(X);χb(Y )) = 0
for all a, b ∈ [0, 1], then X and Y are statistically independent.

Proof. Because in general I(X;Y ) = 0 only if X and Y are statistically independent, our assumption im-
plies that χa(X) and χb(Y ) are independent for all a, b ∈ [0, 1]. The claim then follows from Theorem 2.1.3
of [51] with A1 = {{(x, y) ∈ [0, 1]× [0, 1] : x < a} : a ∈ [0, 1]} and A2 = {{(x, y) ∈ [0, 1]× [0, 1] : y <
a} : a ∈ [0, 1]}.

The above lemma implies that when X and Y are not statistically independent, we have a two-by-two
gridding of the unit box such that the distribution induced on the grid cells by the distribution (X,Y ) has
non-zero mutual information. The following proposition uses this to lower-bound the MIC of data drawn
from (X,Y ) in this case.

Proposition 6.8. Let D be a set of n independent samples from a distribution (X,Y ) over [0, 1]× [0, 1]. If
X and Y are not statistically independent, then there exists a constant ζ > 0 such that MIC(D) ≥ ζ for
sufficiently large n almost surely.

Proof. To establish our claim, we need to exhibit a grid with few enough cells whose normalized score is
bounded away from 0 with high probability as n grows. Because MIC is the maximum over the normalized
scores of all grids with at most B(n) cells, this will lower-bound MIC. We will exhibit a grid with 4 cells
that serves our purpose.

The contrapositive of Lemma 6.7 gives us our grid because it says that there exist a and b such that
I(χa(X);χb(Y )) 
 0. Consider the grid G that partitions the x-axis at a into 2 columns and the y-axis at b
into 2 rows (independently of any data points). As n grows, the strong law of large numbers gives that the
distribution D|G induced by D on the cells of G will approach (χa(X);χb(Y )) almost surely. Lemma 6.2
then gives that D|G will have mutual information greater than some constant ζ as n grows almost surely.
Because this grid has 2 rows and 2 columns, its normalized score will equal its mutual information, giving
the result.

6.2.2 MIC converges to 0 in probability for statistically independent data

Before we prove this result, we establish some basic facts about randomly drawn points in the unit box. The
following lemma will allow us to think of a set of n points drawn from a distribution (X,Y ) on [0, 1]× [0, 1]
with X and Y statistically independent as a random permutation on n elements.

Lemma 6.9. There exists a map ϕ from sets of n points in [0, 1] × [0, 1] to the symmetric group Sn with
the property that for every distribution (X,Y ) on [0, 1] × [0, 1] with X and Y statistically independent
continuous random variables, and for every σ ∈ Sn, we have Pr[ϕ(D) = σ] = 1/n! where the probability
is over the choice of the set D of n independent samples from (X,Y ).

Proof. We construct ϕ. Because X and Y are continuous, the points in D will almost surely have distinct x-
and y-values. Thus, we need only define ϕ on such sets, because the value of ϕ on sets with non-distinct x-
or y-values will not change Pr[ϕ(D) = σ].

Any set D of points that all have distinct x- and y-values can be written as {(a1, bσ(1)), . . . , (an, bσ(n))}
where the lists (x1, . . . , xn) and (y1, . . . , yn) are sorted and σ is a random permutation in Sn. For any such
set D, we therefore define ϕ(D) = σ.

By statistical independence, the y-values of each of the n points in D are drawn from the same distribu-
tion. This implies that any ordering among them is equally likely. Since there are n! possible orderings, the
probability of ending up with any particular one is therefore 1/n!.
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The next lemma will be used later to show that a random set of points that is equipartitioned on the y-axis
will not contain too many consecutive points in the same row. In the lemma, we call a q-ary string of length
n balanced if each value in [q] appears at least bn/qc times in the string. Also, for any q-ary string, we call
a set of consecutive digits that are equal a clump.

Lemma 6.10. The probability that a randomly chosen balanced q-ary string of length n contains a clump of
length at least a is at most n/qa−1.

Proof. For simplicity, we assume q | n. We can think of choosing successive digits of a balanced q-ary
string of length n as successively choosing balls without replacement from a set of q bins that each start
out containing n/q points. The probability that the first a digits of such a string equal zero is at most 1/qa

because the first digit is zero with probability at most 1/q and successive digits only become less likely to
equal zero as long as only zeros are being chosen.

We now take successive union bounds, first over all q possible values of the digit that makes up this
clump and then over the at most n possible starting positions for the clump. The result is that the probability
of having any clump in the string is at most n/qa−1, as desired.

The last lemma we prove before establishing our result shows that if the gridding subroutine of the MIC
algorithm equipartitioned along each axis then most of the cells would contain close to the expected number
of points.

Lemma 6.11. Let S be a randomly chosen permutation on [n], and define D = {(i, S(i)}. Let G be a y× k
grid that contains equal numbers of points in every row and column. For every 1 ≤ i ≤ y and 1 ≤ j ≤ k,
define εi,j relative to the uniform distribution on the cells of G as in Lemma 6.2. If ky = O(n1−ε), then with
probability at least 1− kyn−Ω(logn) we have

|εi,j | ≤
log n√
kyn

for all i and j and sufficiently large n.

Proof. We can write the εi,j in terms of the number of points that fall in each cell as

εi,j =
ni,j
n
− 1

ky

where ni,j is the number of points in the i, j-th cell of our grid.
We first bound each εi,j individually and then use a union bound. Without loss of generality we will

consider ε1,1, which only depends on the distribution of the n/k points in the first column of our grid.
Choosing which row each of these points falls in involves assigning a value in [y] to each of the x-values
{1, . . . , n/k}. Because we are choosing a random permutation and the partition of the y-axis needs to be an
equipartition, these assignments are not independent of each other: every row, or value in [y], will appear
exactly n/ky times. However, in such a setting we can still apply Chernoff bounds; this is a consequence of
the theory of negative dependence of random variables. (See, e.g., [Chapter 3.1] of [52].)

The variable n1,1 is a sum of n′ = n/k trials each having success probability p = 1/y. Although the
trials are not independent we can apply the Chernoff bound stated in Lemma 6.1 with ε = log n/

√
pn′ =√

ky log n/
√
n, which is less than 1 for sufficiently large n because of the assumption that ky = O(n1−ε).

Doing so gives

Pr

[∣∣∣∣n1,1 −
n

ky

∣∣∣∣ > √n log n√
ky

]
≤ 2−Ω(log2 n)

⇒ Pr

[
|ε1,1| >

log n√
kyn

]
≤ 2−Ω(log2 n)
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where the second inequality is obtained from the first by dividing the condition in the Pr[· · · ] by n.
To get the bound above to apply to all the εi,j simultaneously, we use a union bound: since there are ky

cells in total, the probability that the condition is not satisfied even for one of them is at most ky2−Ω(log2 n),
as desired.

We now state the main result of this subsection. The result is only proven for our heuristic approximation
of MIC.

Proposition 6.12. Let D be a set of n independent samples from a distribution (X,Y ) over [0, 1] × [0, 1]
with X and Y statistically independent continuous random variables. Then ApproxMIC(D) converges in
probability to 0 as n→∞.

Proof. Recall that, for every number of rows and columns that it considers, the ApproxMIC algorithm be-
gins by drawing an equipartition of, without loss of generality, the y-axis into y rows for some y > 0. It
then attempts to equipartition the x-axis into k = bcB(n)/yc columns for some constant c, subject to the
restriction that no clumps are split in this process. This restriction is enforced greedily: the algorithm runs
through a sorted list of x-values and repeatedly adds successive clumps to its current column when doing so
brings the current column size closer to the column size of an equipartition. Last, the algorithm chooses a
set of at most bB(n)/yc − 1 of the k − 1 lines partitioning the x-axis that maximizes the resultant mutual
information.

Now suppose that X and Y are statistically independent. We upper-bound the MIC of points drawn from
(X,Y ) by showing that no step the ApproxMIC algorithm takes allows it to produce a distribution on the
cells of the grid that is far from uniform. Lemma 6.9, together with the fact that the grids drawn depend only
on the order of the points and not on their actual positions, means that instead of proving the claim for our set
of n points chosen from (X,Y ), we can prove it for the plot of a randomly chosen permutation on n elements.
In this case, Lemma 6.11 gives us that if the algorithm ignored clumps in the way it drew the first partition
into k columns, we would have |εi,j | ≤ log n/

√
kyn for every cell with high probability. Lemma 6.10

implies that with probability at least 1 − 2/n there are no clumps of length greater than 2 log n. When
both of these conditions are met, we have that even if every adjustment of the equipartition to accommodate
clumps brings every cell farther away from uniform, the adjusted grid satisfies

|εi,j | ≤
log (n)√
nky

+
O(log (n))

n

Now that we know that the first partition gives a distribution close to uniform, we analyze the sub-partition
that the algorithm actually uses. To do this, we note that the error term ε̂i,j for any cell in the sub-partition
that results from the merging of two cells is at most the sum of the error terms of those two cells. Since any
cell of the sub-partition will be a combination of at most k old cells, the magnitudes of all the ε̂i,j in our
sub-partition are at most

k

(
log (n)√
nky

+
O(log (n))

n

)
with high probability.

We can apply the same reasoning to the variables ε̂i,∗ and ε̂∗,j . Each is the sum of some subset of the
variables {εi,j}. Since the size of {εi,j} is ky, the maximal absolute value of each of the ε̂i,j is therefore at
most ky times the bound on the εi,j .

Because these bounds imply that ε̂i,j , ε̂i,∗, and ε̂∗,j all vanish for large n and the bounds hold with
probability at least 1− ky2−Ω(log2 n) − 2/n, we can apply Lemma 6.2 to obtain the result.

6.2.3 The requirement B(n) ≤ O(n1−ε) in Definition 2.3 is tight

We now turn to showing that our requirement in the definition of MIC that B(n) ≤ O(n1−ε) is tight. We
mean this in the sense that if B(n) were allowed to grow as n1+ε, the MIC of n randomly chosen points
would grow non-trivially. Our lower bound rests on a simple argument that considers a partition into a few
rows and many (up to n) columns. The following lemma is proven for the optimal MIC algorithm but also
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holds for our approximation algorithm since the partition into rows is an equipartition. It will also be central
to our results about the high MIC scores of functions in the next section.

Lemma 6.13. LetD be a set of n ordered pairs with unique x-values whose y-values are (y, h)-partitionable.
Let z be the number of pairs of points with consecutive x-values whose y-values are in different bins of the
partition. Then MIC(D) ≥ h if B(n) ≥ y(z + 1).

Proof. We construct a grid G that achieves a score of h. We begin with the equipartition into rows. Next, we
order the points of D by their x-value and add a vertical line between every two consecutive points whose
y-values are in different bins. This grid has at most y rows and z + 1 columns, making for at most y(z + 1)
total cells, as required.

By Lemma 6.3, we have that I(D|G) = HY (D|G) ≥ h log y because HY
j (D|G) = 0 for all j. And

since the normalization step is a division by log y, the MIC is at least h.

Applying Lemma 6.13 to statistically independent distributions shows us that if we did allow B(n) to
grow like n1+ε then the MIC of statistically independent data would be 1 for sufficiently large n. We show
this below.

Theorem 2. Let (X,Y ) be a joint distribution over [0, 1] × [0, 1] where X and Y are continuous random
variables. Let D be a set of n points drawn from (X,Y ) with n even. If MIC were defined in a way that
allowed B(n) = Ω(n1+ε), then we would have MIC(D) = 1 almost surely for sufficiently large n.

Proof. Since X and Y are continuous, the x- and y-values of D are all unique almost surely. It follows that
the y-values are 2-equipartitionable almost surely. The result then follows from application of Lemma 6.13
with y = 2 together with the fact that for any collection of points with unique x- and y-values, z ≤ n − 1
and so 2(z + 1) ≤ 2n = o(n1+ε).

6.3 Most noiseless functions have MICs approaching 1
We now show that data drawn from a distribution (X, f(X)) where f is a nowhere-constant function and X
is a continuous random variable will receive MIC scores approaching 1 as sample size grows. By nowhere-
constant we mean that the function in question is not constant on any open interval. We note that this
restriction is reasonable in the sense that the set of nowhere-constant functions is dense in the set of all
functions; that is, any function can be approximated arbitrarily well by nowhere-constant functions.

Our result is an easy consequence of Lemma 6.13. The crux of the argument is that since the y-values of
the data are related by a function to their corresponding x-values, the number of columns required to ensure
that each column contains only one non-empty cell is small. In particular, this number depends only on the
function in question so that as sample size increases MIC will detect the function almost surely.

The following proposition is at the heart of our statement about noiseless functions. It is followed by our
main theorem and an additional proposition that make its consequences concrete.

Proposition 6.14. Fix a function f on the unit interval and letD be a set of n distinct ordered pairs contained
in the set {(x, f(x)) : x ∈ [0, 1]} whose y-values are (B(n)α, h)-partitionable for some α < 1/2. Then
MIC(D) ≥ h for sufficiently large n.

Proof. There are at most kB(n)α pairs of points with consecutive x-values with y-values in different bins of
the equipartition, where k is a constant that depends on f . Therefore, when n is sufficiently large, the result
follows from application of Lemma 6.13 with y = B(n)α since y(z + 1) = o(B(n)).

The following theorem is our main result about the MIC scores of noiseless functions. It is stated in terms
of distributions and takes into account the fact that when sample size is odd, the lack of perfect equipartition-
ability of the y-values means that the MIC cannot quite equal 1.

Theorem 3. Let D be a set of n independent samples from some distribution (X, f(X)) where f is a
nowhere-constant function on [0, 1] and X is a continuous random variable. Then MIC(D)→ 1 as n→∞
almost surely.
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Proof. Since X is continuous, the points in D will have unique x-values almost surely and since f is never
constant the points will therefore also have unique y-values almost surely. Lemma 6.6 implies that for all
0 < ε ≤ 1, the y-values inD will be (2, 1−ε)-partitionable almost surely for sufficiently large n. Application
of Proposition 6.14 then gives that MIC(D)→ 1 for sufficiently large n almost surely.

The following proposition, whose proof is similar to that of Theorem 3, shows that functions that are
constant can also be detected by MIC. It is trickier to characterize exactly which ones, but the clear case is
that of step functions.

Proposition 6.15. Let f be a step function defined on the unit interval with k steps of equal sizes. Let D be a
set of n independent samples from the distribution (X, f(X)) where X is the uniform distribution on [0, 1].
Then MIC(D)→ 1 as n→∞ almost surely.

6.4 Most finite unions of differentiable curves have MICs approaching 1
In this section, we use a generalization of Proposition 6.14 (Proposition 6.17 below) to prove that for finite
unions of differentiable curves which are nowhere flat and nowhere vertical, the MIC of points drawn from
the union of the images of the curves approaches 1 almost surely as sample size grows.

By a curve we mean a continuous map c : [0, 1] → [0, 1] × [0, 1]. A differentiable curve is a map
c(t) = (x(t), y(t)) such that dx/dt and dy/dt exist everywhere (including a right-derivative at 0 and a left-
derivative at 1). We say that a differentiable curve c(t) = (x(t), y(t)) is nowhere flat (resp. vertical) if dx/dt
(resp. dy/dt) equals 0 at finitely many points.

Remark 6.16. The nowhere-flat and nowhere-vertical conditions are analogous to the nowhere-constant con-
dition imposed on functions in Proposition 6.14. They ensure that no non-trivial distribution on the union of
the images of the curves is statistically independent. The following argument shows this: take any distribu-
tion (X,Y ) on the image of a curve c whose support contains an open subset of the image of c. This means
that the support of (X,Y ) contains some U ∩ c([0, 1]) where U is open in [0, 1] × [0, 1]. The continuity of
C then implies that c−1(U) contains an open set in [0, 1] and therefore contains some interval (a, b) which
is in the preimage of the support of D.

Now, since x(t) is continuous and dx/dt vanishes in finitely many places, x((a, b)) contains some inter-
val on the x-axis. In other words, the projection of the support of (X,Y ) onto the x-axis contains an interval.
Applying the same argument with y(t) instead gives that the projection of the support of (X,Y ) onto the
y-axis contains an interval as well. Now, assuming thatX and Y are statistically independent, we get that the
support of (X,Y ) contains the Cartesian product of these two intervals. But this is a contradiction because
the support of (X,Y ), being contained in a finite union of images of differentiable curves, has measure 0 in
[0, 1]× [0, 1].

We now prove Proposition 6.17, which we will use to prove Theorem 4.

Proposition 6.17. Let f1 . . . f` be functions on the unit interval, and let D be a set of n ordered pairs with
distinct x-values such that for all (x, y) ∈ D, y = fi(x) for some i, and whose y-values are (B(n)α, h)-
partitionable for some α < 1/2. Then for all ε > 0, MIC(D) ≥ h− ε for sufficiently large n.

Proof. We lower bound MIC(D) by constructing a grid G as follows. We start with the partition of the y-
values into at most B(n)α rows that guarantees HY (D) ≥ h log (B(n)α). Because the x-values are distinct,
we see that as in the proof of Proposition 6.14 there is a constant k depending only on our functions such that
it is possible to partition the x-axis into kB(n)α columns, each with at most ` non-empty bins. Lemma 6.3
then gives that

I(D) = HY (D)−
x∑
j=1

pX(j)HY
j (D)

≥ h log (B(n)α)− log `
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where the second line follows from the first because HY (D) ≥ h log (B(n)α) and HY
j (D) ≤ log ` for all

j. Since the normalization step is a division by at most log (B(n)α), we therefore have

MIC(D) ≥ h− log `

log (B(n)α)

from which the result follows.

We now present the main result about the MIC scores of finite unions of curves.

Theorem 4. Let c1 . . . c` be nowhere flat, nowhere vertical, differentiable curves, and let D be a set of n
ordered pairs lying in ∪ici([0, 1]) with distinct x- and y-values. Then for all ε > 0, MIC(D) ≥ 1 − ε for
sufficiently large n.

Proof. To establish the result, we just need to exhibit a finite set of nowhere-constant functions F =
{f1, . . . , fk} on [0, 1] such that each point in D falls in some set {(x, fi(x)) : x ∈ [0, 1]}. We can then
apply Proposition 6.17 since the y-values of D are B(n)α-equipartitionable for every α < 1/2 and the
x-values of D are distinct.

To build the set F , we show that for each curve ci, we have

ci([0, 1]) ⊆ ∪f∈Fi{(x, f(x)) : x ∈ [0, 1]}

where |Fi| <∞. Since there are finitely many ci, this will give that F = ∪Fi is finite, thereby implying the
result.

To build Fi, we use the following procedure: write ci(t) = (x(t), y(t)) and let T = {t ∈ [0, 1] : y′(t) =
0}. Because ci is nowhere vertical, there are at most finitely many of these and so, letting {Ia} denote the
closed intervals delimited by the points in {0, 1} ∪ T , we have that |{Ia}| < ∞. On each interval Ia, y(t)
can be re-written as a function fa of x(t) on Ia. Moreover, by the nowhere flatness of ci we have that fa is
nowhere constant. Therefore, there exists a nowhere-constant function ga : [0, 1]→ R that equals fa on Ia.

Now, since at every t ∈ [0, 1] we have ci(t) = (x(t), fa(x(t))) for some fa, lettingFi = {fa} establishes
our claim.

6.5 A lower bound on the MIC of noisy functional distributions in terms of R2

We now move on to analyzing the MIC of a distribution obtained by drawing points at random from [0, 1],
passing them through a function, and then perturbing each of them by some amount of noise. Specifically,
we will prove a lower bound on the MIC of such a distribution in terms of the R2 of that distribution with
respect to the noiseless function used to create it.

By R2, we mean the squared Pearson correlation coefficient between the perturbed y-values and the true
y-values of our data. The Pearson correlation coefficient is defined as follows.

Definition 6.18. Given two distributions X and Y , the Pearson correlation coefficient ρX,Y between X and
Y is defined by

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

where σX and σY are the standard deviations of X and Y respectively and µX and µY are the means of X
and Y respectively.

There are two sources of error that we need to address in this analysis. The first is the error introduced
by the perturbation of the points; the second is the sampling error that we have had all along. Specifically, it
may be that our sample looks far from a typical random sample of the function. We begin by addressing this
second problem, showing that for any specified grid, the deviation of the number of points in each cell from
the expectation is small with high probability. Together with Lemma 6.2, the following Lemma implies that
sampling error affects the MIC negligibly for our purposes.
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Lemma 6.19. Let G be a x×y grid with x and y constant, and let D be a set of n samples drawn from some
probability distribution (X,Y ) over [0, 1] × [0, 1]. For every 1 ≤ i ≤ y and 1 ≤ j ≤ x, define εi,j as in
Lemma 6.2 relative to the distribution (X,Y ) induces on the cells of G. For all i and j, and for sufficiently
large n, we have that

|εi,j | <
log n

n

with probability at least 1− xy2−Ω(log2 n) = 1− xyn−Ω(logn).

Proof. The number of points ni,j in the i, j-th cell of G is the sum of n independent Bernoulli trials each
having probability pi,j where pi,j is the probability mass of (X,Y ) that lies in the i, j-th cell. We therefore
use the Chernoff bound of Lemma 6.1 with ε = log n/

√
pi,jn to bound |εi,j | by the desired quantity and

then perform a union bound over the xy cells of G.

The remainder of this section is devoted to proving the following main result. In doing so, we will
analyze an idealized continuous distribution instead of worrying about the number of points in each cell as a
random variable. That is, we will assume that every cell of our grids contains the expected number of points.
Thus, when we write MIC(X,Y ) for some distribution (X,Y ), we will mean the limit of the MIC of sets of
samples from D as sample size grows. (The same note holds for R2.) Lemmas 6.19 and 6.2 then imply that
our results are off by an additive factor of at most o(1).

Theorem 5. Fix a function f : [0, 1] → [0, 1]. Let Fh be the distribution (X, f(X) + Eh) where X is the
uniform distribution on [0, 1] and Eh is the uniform distribution on [−h, h]. If D is a set of n points drawn
from Fh, then with probability at least 1− n−Ω(logn), we have

MIC(Dn) ≥ 1− c

smin

√
3smax − 2

smax

√
1

R2
− 1− o(1).

where smax is the maximum slope, in absolute value, of f on the unit interval, c is the number of intervals on
which |f(x)− y0| ≤ h, smin is the minimum slope of f on those intervals, and R is the Pearson correlation
coefficient between f(X) and f(X) + Eh.

To prove this theorem, we will upper-bound R2, and lower bound MIC.

6.5.1 Upper-bounding R2 of Fh

We can actually calculate R2 exactly using the fact that R is the Pearson correlation coefficient between
f(X) and f(X) + Eh. The following two lemmas accomplish this.

Lemma 6.20. cov(f(X), f(X) + Eh) = σ2
f(X)

Proof. It is easily verified that the mean of f(X) equals the mean of f(X)+Eh. Letting µ denote this mean,
we have

cov(f(X), f(X) + Eh) =

∫ 1

0

1

2h

∫ h

−h
(f(x)− µ)(f(x) + y − µ)dydx

=

∫ 1

0

1

2h

∫ h

−h

(
(f(x)− µ)2 + y(f(x)− µ)

)
dydx

=

∫ 1

0

(f(x)− µ)2dx

= σ2
f(X)

Lemma 6.21. The standard deviation of f(X) + Eh satisfies

σ2
f(X)+Eh

= σ2
f(X) +

h2

3
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Proof. Using µ as in the previous lemma, we have

σ2
f(X)+Eh

=

∫ 1

0

1

2h

∫ h

−h
(f(x) + y − µ)2dydx

=

∫ 1

0

1

2h

∫ h

−h

(
(f(x)− µ)2 + 2y(f(x)− µ) + y2

)
dydx

=

∫ 1

0

(
(f(x)− µ)2 +

h2

3

)
dx

= σ2
f(X) +

h2

3

The previous two lemmas together give the following result

Proposition 6.22. For every function f on the unit interval and any h > 0, we have

R(h)2 =
σ2

σ2 + h2

3

=
1

1 + h2

3σ2

whereR(h) denotes the Pearson correlation coefficient of f(X) and f(X)+Eh, and σ denotes the standard
deviation of f(X).

Corollary 6.23. For any function f : [0, 1]→ [0, 1], we have

R(h)2 ≤ 1

1 + 4smaxh2

3smax−2

Where smax is the maximum slope, in absolute value, of f on the unit interval.

Proof. The function with maximum slope smax that maximizes σ2 is the concatenation of a horizontal line
at y = 0, a line with slope smax, and a horizontal line at y = 1. This function has variance 1

4 −
1

6smax
.

6.5.2 Lower-bounding MIC

We now proceed to lower-bounding the MIC of Fh. We will do so using Lemma 6.3, which relates the mutual
information of the distribution induced on the cells of any grid by Fh to the weighted average of the entropies
of the columns of that distribution. We then construct a grid with the property that most of its columns have
low entropy.

Lemma 6.24. Fix a nowhere-constant function f and a noise level h, and let y0 be the y-value such that 1/2
the probability mass of Fh is above y0 and half is below it. Let `(f, h) be the fraction of the unit interval on
which |f(x)− y0| ≤ h. Then we have

MIC(Fh) ≥ 1− `(f, h)

.

Proof. Draw a horizontal gridline at y = y0. Every time f enters or exits the strip y0 ± h, draw a vertical
line. If the j-th column of our grid has |f(x) − y0| > h, then HY

j (Fh|G) = 0. On the other hand, if it has
|f(x) − y0| ≤ h, then we still have HY

j (Fh|G) ≤ 1 because binary entropy never exceeds one. The result
follows from Lemma 6.3.

Corollary 6.25. Let c be the number of intervals on which |f(x) − y0| ≤ h, and let smin be the minimum
slope of f on those intervals. Then

MIC(Fh) ≥ 1− 2c

smin
h

Proof. `(f, h) ≤ 2c
smin

h.

Theorem 5 then follows from combining Corollary 6.23 and Corollary 6.25 with Lemmas 6.19 and 6.2.
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Figure S3: Additional measures of dependence applied to 27 different functional relationship types and
graphed against R2 for each relationship type as in Figure 2. The statistics on the y-axes are (a) The mean
squared error (MSE) relative to the estimated principal curve of the data and (b) Distance correlation [21].
For more information on how these plots were created, see Section 4.3.
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Figure S4: MIC and mutual information vs. R2 as in Figure 2, for various noise models and sample sizes
as follows. For parts (a) and (b), points were chosen evenly along the curve {(t, f(t)} described by each
function f , and noise was added only in the y direction (as in Figure 2). In part (a), the sample size is always
250, and in part (b), the sample size is always 500. Parts (c), (d), and (e) show results for different noise
models: for part (c), points are chosen evenly along the curve described by the function, and noise is added
in both the x and y directions; for part (d), points are chosen evenly along the x-axis, and noise is added
only in the y direction; and for part (e), points are chosen evenly along the x axis, and noise is added in both
the x and y directions. The legend for parts (c), (d), and (e) specifies the sample size used for each function
in parentheses next to the name of that function. For more information on how these plots were created,
see Section 4.3, and for descriptions of the specific functions used see Table S3. For figures (c), (d), and
(e), functions with very steep portions are omitted and the “Exponential [2x]” function has x ∈ [0, 2] rather
than x ∈ [0, 10]. This is because adding x noise to a steep function distorts its R2, and because sampling
uniformly along the x axis is also inappropriate for steep functions.
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Figure S5: Performance of MIC and competing methods on non-functional associations in which neither variable has strong predictive power for the other. (A)
Selected non-functional relationships from the scientific literature in which neither variable has strong predictive power for the other. (B,C,D) Scores given by
MIC, spatially adaptive smoothing splines (R2) [53],[1], and loess nonparametric regression (R2) [10],[54], respectively, to a simple linear relationship, as well
as three simulated associations inspired by the relationships in (A) (n = 10, 000). Each row contains four instances of one of these patterns with progressively
more uniform horizontal and vertical noise added. The horizontal location of each thumbnail represents the score given to that set of data. As the patterns get
noisier, their MIC scores degrade in an intuitive way. However, this is not the case for the other two methods, which assign the noisiest linear relationship a
higher score than any instance of the other three relationships. (This is the expected behavior of these methods, since they try to find a function that describes
the data).

Income / Person (Int$) 

A
du

lt 
(F

em
al

e)
 O

be
si

ty
 (%

) 

0

25

50

75

0 20,000 40,000

Line

Two Lines

Line & Parabola

Ellipse

Line

Two Lines

Line & Parabola

Ellipse

Line

Two Lines

Line & Parabola

Ellipse

R2 w.r.t. Smoothing Spline
1.00 0.80 0.60 0.40 0.20 0.00

MIC
1.00 0.80 0.60 0.40 0.20 0.00

R2 w.r.t. Locally Weighted Nonparametric Regression (Loess)
1.00 0.80 0.60 0.40 0.20 0.00

Patterns from Published Data

[Mo]-Total organic carbon covariation in modern sediments
(Algeo et al., 2006)

Associations between # of stressful life events and depression
as function of 5-HT T genotype (Caspi et al., 2003)

Association found in WHO Global indicators dataset in this manuscript

Oxygen Isotopes for lunar meteorites and other achondrites
(Clayton and Mayedo, 1996)

Simulations Inspired by Patterns in Published Data

Line & Parabola

Ellipse

Two Lines

Two Lines

BA

D

C

Figure R1: Performance of MIC and Competing Methods on Selected Non-Functional Associations
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Relationship Type

Linear 0.80 0.65 0.50 0.35

Two Lines 0.80 0.65 0.50 0.35

Parabolic 0.80 0.65 0.50 0.35

Line and Parabola 0.80 0.65 0.50 0.35

X 0.77 0.65 0.50 0.35

Ellipse 0.78 0.65 0.50 0.35

Sinusoidal 0.80 0.65 0.50 0.35

Sinusoidal
(Mixture of two signals)

0.76 0.65 0.50 0.35

Non-coexistence 0.69 0.65 0.50 0.35

Relationship Type

Linear 0.85 0.70 0.54 0.37 0.85 0.70 0.53 0.36

Two Lines 0.28 0.28 0.27 0.23 0.27 0.27 0.26 0.22

Parabolic 0.87 0.71 0.50 0.28 0.86 0.71 0.52 0.31

Line and Parabola 0.31 0.31 0.31 0.27 0.31 0.31 0.30 0.26

X 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00

Ellipse 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03

Sinusoidal 0.84 0.65 0.43 0.27 0.85 0.64 0.43 0.26

Sinusoidal
(Mixture of two signals)

0.49 0.49 0.40 0.29 0.49 0.49 0.40 0.27

Non-coexistence 0.52 0.47 0.41 0.31 0.47 0.46 0.40 0.30
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Increasing Noise
Thumbnails of Relationships Used MIC Score

R2 w.r.t. Smoothing Spline R2 w.r.t. Locally Weighted Nonparametric Regression (Loess)

Increasing Noise

Figure S6: Performance of MIC and competing methods on non-functional associations in which neither
variable has strong predictive power for the other. As in Figure S5, several relationship types were gen-
erated (n = 10, 000) and increasing amounts of uniform horizontal and vertical noise were added to each
one. Each relationship was scored with MIC, smoothing splines (R2) [53],[1], and loess nonparametric re-
gression (R2) [10],[54]. (Top Left) Plots of the relationships used. (Rest) Scores assigned to each of these
relationships, with cells colored according to the magnitude of the score. The MIC scores of the different re-
lationships correspond intuitively to noise; the other two methods assign much higher scores to the functional
relationships (as they are intended to do).
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Figure S7: The surfaces derived from the characteristic matrices of the data sets presented in Table S1.
Each surface’s x- and y- axes represent the number of columns and rows respectively used to partition the
two variables being analyzed, and the z-axis represents the normalized score of the data under those grid
dimensions. The five different statistics presented in Table S1 are calculated from the characteristic matrices
of these data. All relationships analyzed had a sample size of 1000.
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Figure S8: A comparison of MAS, Fisher test (Fourier analysis), Ahdesmaki et al. test, and Spearman
correlation coefficient on a suite of monotonic and periodic functions. For each periodic function f in the
legend, 1000 functions f1, . . . , f1000 were generated with average wavelength equal to the wavelength of f
(each period of each fi has length L+ dL where L is the wavelength of f and d was chosen from a normal
distribution with standard deviation 0.1.) 1000 points were chosen from each fi, and the x- and y-values of
each point were perturbed by a number chosen uniformly from [−h, h], where h is a noise level set to 0.05.
We did the same for each monotonic function shown, but with all of the fi equal to f . We then calculated
Fisher, Spearman, Ahdesmaki, and a combined MIC/MAS score (the score of data with MIC < 0.4 was
0; otherwise, the score was the MAS of the data) for each of the fi and for 1000 random clouds, giving us
a distribution of 1000 scores for each f and for each test. Each distribution is graphed as a histogram on
the horizontal line corresponding to f , and the histograms are color-coded by function type (red = periodic
functions, blue = non-periodic functions, and black = randomly generated data). This procedure is repeated,
focusing only on Fisher and MAS scores and varying d (the period-length perturbation factor) and the noise
level h. The results are shown in Figure S9.
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Figure S9: A comparison of MAS and Fourier analysis as in Figure S8 on a suite of noisy monotonic
and periodic functions with varying period-length perturbation factors and noise levels: (a) period-length
perturbation factor = 0, added noise level = 0; (b) period-length perturbation factor = 0.3, added noise level
= 0.005; (c) period-length perturbation factor = 0.5, added noise level = 0.0.
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Figure S10: A screenshot of an interactive spring graph generated from the output of the MINE analysis of
the global indicators dataset, reflecting the high-level structure of this dataset according to MINE. This figure
is discussed in Section 4.10.
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Figure S11: A sample of genes from Spellman et al. (1998) whose MICs were significant using a false
discovery rate of 0.05, sorted by MAS. Each plot contains the given time series’ MIC, MAS, and the score
assigned to it by Spellman et al. Note that among these high-MIC genes, periodicity generally decreases as
MAS decreases. (a) Six of the top scoring (MAS) genes. (b) Eight typical genes sampled from throughout
the range of MAS scores, sorted by MAS (thus approximately in order of decreasing periodicity). (c) Six of
the lowest scoring (MAS) genes.
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Figure S12: Histograms of joint distributions from several of the strongest associations with player salary
according to MIC and ρ from the 2008 Major League Baseball season. Histograms are colored on a log10

scale. The plots of hits vs. salary and total bases vs. salary appear to be governed by joint distributions that
are classified as weaker by ρ because they are non-linear.
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Figure S13: Illustrations of the characteristic matrix for noisy versions of some of the functions in Figure 3
from the main text, with R2 = .75
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Table S9: Top scoring 1% of relationships (by MIC) from a modified version of the global indicators dataset.
This dataset included only 114 of the less redundant variables from original global indicators dataset. Each
row includes the MIC score resulting from MINE analysis for a pair of variables, their Pearson product-
moment correlation coefficient ρ, and the non-linearity score MIC−ρ2. The ranks for each of the relation-
ships are out of the 6,441 relationships in the reduced dataset.

Var1 Var2 MIC MIC 
Rank Pearson (ρ) Pearson 

Rank MIC - ρ2 MIC - ρ2 
Rank 

Children per woman Total fertility rate (per woman) 1.000 1 0.999 1 0.001 5806 

Energy use Primary energy consumption per 
person 1.000 2 0.942 11 0.113 5501 

Oil consumption per person Income per person 1.000 3 0.733 207 0.463 173 
Prevalence of tuberculosis (per 100 000 
population) Deaths from TB per 100 000 estimated 0.983 4 0.926 16 0.126 5429 

CO2 emissions Energy use 0.956 5 0.911 21 0.127 5425 
Per capita total expenditure on health 
(PPP int. $) Health expenditure per person 0.950 6 0.971 7 0.007 5793 

Electric power consumption Energy use 0.950 7 0.847 48 0.233 3192 

Health expenditure per person Income per person 0.943 8 0.827 63 0.260 2355 

Number of laboratory health workers External debt total DOD current US 
dollars 0.932 9 0.821 69 0.258 2412 

Primary energy consumption per person Personal computers per 100 people 0.931 10 0.342 1656 0.814 1 

CO2 emissions Electric power consumption 0.929 11 0.659 387 0.495 107 

Women who have had mammography (%) Women who have had PAP smear (%) 0.927 12 0.835 56 0.229 3339 

Children per woman Population median age (years) 0.924 13 -0.839 54 0.220 3645 

Under five mortality from IHME Life expectancy at birth 0.919 14 -0.877 33 0.149 5254 

Women who have had mammography (%) Medical Doctors 0.908 15 0.780 134 0.298 1463 

Oil consumption per person Life expectancy at birth 0.906 16 0.490 1000 0.667 5 

Children per woman Population living below the poverty line 
(% living on < US$1 per day) 0.903 17 0.712 252 0.396 413 

Prevalence of HIV among adults aged 
&gt;=15 years (per 100 000 population) 

Deaths due to HIV/AIDS (per 100 000 
population per year) 0.894 18 0.979 4 -0.065 5868 

Under five mortality from IHME 
Under-5 mortality rate (Probability of 
dying aged < 5 years per 1 000 live 
births) lowest wealth quintile 

0.892 19 0.931 14 0.026 5765 

Electric power consumption Primary energy consumption per 
person 0.891 20 0.731 211 0.356 697 

Inequality index Income share held by lowest 20pct 0.884 21 -0.953 10 -0.024 5836 

External debt total DOD current US dollars Total income 0.882 22 0.852 43 0.156 5194 

Energy use Income per person 0.878 23 0.841 51 0.170 5003 
Cervical cancer deaths per 100 000 
women Oil consumption per person 0.877 24 -0.396 1411 0.720 2 

Under-5 mortality rate (Probability of 
dying aged < 5 years per 1 000 live births) 
lowest wealth quintile 

Children per woman 0.868 25 0.848 46 0.149 5260 

Per capita total expenditure on health 
(PPP int. $) Income per person 0.867 26 0.825 64 0.186 4690 

Electric power consumption Income per person 0.860 27 0.849 44 0.139 5331 
Maternal mortality ratio (per 100 000 live 
births) 

Population living below the poverty line 
(% living on < US$1 per day) 0.848 28 0.744 188 0.294 1558 

Number of laboratory health workers Total income 0.847 29 0.980 3 -0.113 5884 
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Total fertility rate (per woman) Population median age (years) 0.845 30 -0.841 52 0.138 5335 

Women who have had mammography (%) Income per person 0.843 31 0.807 85 0.193 4527 
Per capita total expenditure on health 
(PPP int. $) Cell phones per 100 people 0.843 32 0.729 216 0.311 1257 

Registration coverage of births (%) Maternal mortality ratio (per 100 000 
live births) 0.840 33 -0.797 98 0.206 4143 

Electric power consumption Oil consumption per person 0.839 34 0.619 507 0.456 187 

Registration coverage of births (%) Prevalence of tuberculosis (per 100 000 
population) 0.839 35 -0.632 467 0.439 238 

Population living below the poverty line 
(% living on < US$1 per day) 

Population with sustainable access to 
improved sanitation (%) total 0.838 36 -0.780 137 0.230 3309 

Oil consumption per person Health expenditure per person 0.836 37 0.373 1515 0.696 3 

Births attended by skilled health staff Maternal mortality ratio (per 100 000 
live births) 0.834 38 -0.805 89 0.186 4686 

Under-5 mortality rate (Probability of 
dying aged < 5 years per 1 000 live births) 
lowest wealth quintile 

Total fertility rate (per woman) 0.834 39 0.848 47 0.116 5485 

Under five mortality from IHME Maternal mortality ratio (per 100 000 
live births) 0.833 40 0.933 13 -0.038 5853 

Under-5 mortality rate (Probability of 
dying aged < 5 years per 1 000 live births) 
lowest wealth quintile 

Contraceptive prevalence (%) 0.831 41 -0.790 112 0.207 4114 

Years of life lost to non-communicable 
diseases (%) 

Maternal mortality ratio (per 100 000 
live births) 0.829 42 -0.798 96 0.192 4546 

Electric power consumption Health expenditure per person 0.826 43 0.782 129 0.214 3865 

Under five mortality from IHME Registration coverage of births (%) 0.825 44 -0.805 88 0.177 4885 

Women who have had mammography (%) Health expenditure per person 0.823 45 0.748 183 0.263 2223 

Women who have had mammography (%) Internet users 0.823 46 0.795 101 0.191 4576 
Years of life lost to non-communicable 
diseases (%) Life expectancy at birth 0.821 47 0.890 27 0.029 5761 

Registration coverage of births (%) Births attended by skilled health staff 0.816 48 0.829 59 0.129 5404 

Women who have had mammography (%) Cell phones per 100 people 0.816 49 0.805 87 0.167 5042 

Income per person Cell phones per 100 people 0.814 50 0.782 131 0.202 4253 

Life expectancy at birth Deaths from TB per 100 000 estimated 0.812 51 -0.800 92 0.172 4983 

Agriculture contribution to economy Income per person 0.811 52 -0.620 505 0.427 284 

Electric power consumption Cell phones per 100 people 0.808 53 0.680 329 0.345 801 

Number of dentistry personnel Number of pharmaceutical personnel 0.806 54 0.554 752 0.499 105 

Women who have had mammography (%) Breast cancer new cases per 100 000 
women 0.805 55 0.863 40 0.060 5697 

Registration coverage of births (%) Years of life lost to non-communicable 
diseases (%) 0.805 56 0.716 244 0.292 1592 

Women who have had mammography (%) Per capita total expenditure on health 
(PPP int. $) 0.803 57 0.823 67 0.125 5430 

CO2 emissions Income per person 0.803 58 0.719 233 0.287 1692 

Women who have had PAP smear (%) Medical Doctors 0.801 59 0.818 73 0.132 5379 

Energy use Maternal mortality ratio (per 100 000 
live births) 0.801 60 -0.432 1240 0.615 13 

Women who have had PAP smear (%) Cell phones per 100 people 0.801 61 0.780 135 0.192 4556 

External debt total DOD current US dollars Patents in force 0.800 62 0.864 39 0.054 5710 
Under-5 mortality rate (Probability of 
dying aged < 5 years per 1 000 live births) 
lowest wealth quintile 

Population with sustainable access to 
improved drinking water sources (%) 
total 

0.799 63 -0.711 256 0.294 1557 
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Country Prevalence of Adult Females 
Who are Obese (%) 

Income per Person (GDP/Capita, 
Inflation-Adjusted International $) 

Tonga 74.9 5,135 
Samoa 66.3 4,872 

Cook Islands 65.7 9,000 
Nauru 60.5 2,500 
Egypt 46.6 5,049 
Iraq 38.2 3,200 
Fiji 26.4 4,209 

Vanuatu 25.2 3,477 

Table S10: Countries constituting the minority trend in the relationship between income per person
(GDP/capita, inflation-adjusted $) and the prevalence of adult (≥ 15 years old) female obesity (%) in the
global indicators dataset (Figure 4F). These are the eight countries with the highest adult female obesity and
an income per person of less than $10,000, and they appear to follow the steep linear trend rather than the
parabolic trend. Of these eight countries, six are Pacific Island countries, where culturally, large physical
size is considered a sign of beauty and status [33].

Country Gross National Income per Capita  
(PPP International $) 

Health Expenditure per Person 
(PPP International $) 

Brunei Darussalam 49,900 519 
Kuwait 48,310 687 
Bahrain 34,310 710 

United Arab Emirates 31,190 833 
Saudi Arabia 22,300 448 

Oman 19,740 312 
 

Table S11: Countries leading the minority trend in the relationship between gross national income per capita
(international dollars, using purchasing power parity) and health expenditure per person (international dol-
lars, using purchasing power parity) in the global indicators dataset (Figure 4H). These are the six countries
with the highest gross national income per capita and a health expenditure per person of less than $850, and
they appear to follow the flat linear trend rather than the steep exponential trend. All six of these countries
have economies that rely significantly on oil[37].
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Var1 Var2 MIC MIC Rank Pearson (�) Pearson Rank 
Player Salary RPMLV 0.369 1 0.357 14 
Player Salary H 0.367 2 0.316 37 
Player Salary TB 0.361 3 0.348 20 
Player Salary PA 0.360 4 0.324 31 
Player Salary BALLS 0.356 5 0.369 8 
Player Salary LD 0.354 6 0.308 40 
Player Salary PA% 0.350 7 0.323 32 
Player Salary TOB 0.349 8 0.368 9 
Player Salary FB 0.346 9 0.285 52 
Player Salary STRIKES 0.345 10 0.306 41 
Player Salary BB 0.344 11 0.404 1 
Player Salary PITCHES 0.344 12 0.335 26 
Player Salary UBB 0.343 13 0.371 6 
Player Salary Batted Balls 0.342 14 0.296 48 
Player Salary RPMLVr 0.341 15 0.323 33 
Player Salary SIT_DP 0.340 16 0.349 19 
Player Salary PA_PH 0.339 17 -0.267 59 
Player Salary G_PH 0.339 18 -0.266 60 
Player Salary AB 0.339 19 0.304 43 
Player Salary EqR 0.338 20 0.368 10 
Player Salary PMLV 0.336 21 0.296 47 
Player Salary OBI 0.335 22 0.363 11 
Player Salary RAR 0.334 23 0.377 4 
Player Salary OUT 0.331 24 0.293 49 
Player Salary R3 0.327 25 0.323 34 
Player Salary RBIR 0.327 26 0.282 55 
Player Salary MLVr 0.327 27 0.345 22 
Player Salary PA_ROB 0.326 28 0.356 15 
Player Salary ROB 0.326 29 0.351 18 
Player Salary MLV 0.326 30 0.355 16 
Player Salary VORPr 0.325 31 0.324 30 
Player Salary TBP 0.324 32 0.289 50 
Player Salary LEADOFF_PA 0.324 33 0.240 65 
Player Salary R2 0.323 34 0.354 17 
Player Salary RARP 0.322 35 0.334 27 
Player Salary VORP 0.322 36 0.359 13 
Player Salary SH 0.321 37 -0.227 68 
Player Salary DP 0.321 38 0.361 12 
Player Salary OUTS_EQ 0.319 39 0.288 51 
Player Salary EqA 0.318 40 0.310 39 
Player Salary R1 0.317 41 0.348 21 
Player Salary GB 0.317 42 0.260 62 
Player Salary R3_BI 0.317 43 0.315 38 
Player Salary SLG 0.316 44 0.329 29 
Player Salary RBI 0.314 45 0.382 3 
Player Salary 1B 0.313 46 0.272 58 
Player Salary BBr 0.312 47 0.282 54 
Player Salary HR 0.311 48 0.370 7 
Player Salary GIDP 0.311 49 0.342 23 
Player Salary 2B 0.310 50 0.279 56 

Table S12: The 50 variables most closely related to player salary among 2008 Major League
Baseball individual performance statistics, according to MIC. For baseball statistic glossary see:
http://www.baseballprospectus.com/glossary/
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OTU X  OTU Y  Family of OTU X  Family of OTU Y  MIC  Nonlinearity 
OTU4435  OTU4496  Erysipelotrichaceae  Lachnospiraceae  0.506  0.506 
OTU1462  OTU4496  Lachnospiraceae  Lachnospiraceae  0.464  0.464 
OTU4496  OTU6224  Lachnospiraceae  Lachnospiraceae  0.438  0.433 
OTU155  OTU4496  Ruminococcaceae  Lachnospiraceae  0.425  0.425 
OTU4496  OTU5417  Lachnospiraceae  ‐‐  0.414  0.413 
OTU675  OTU5937  Bacteroidaceae  Veillonellaceae  0.414  0.406 
OTU2728  OTU4496  Lachnospiraceae  Lachnospiraceae  0.408  0.403 
OTU5417  OTU5937  ‐‐  Veillonellaceae  0.408  0.380 
OTU4273  OTU4496  Eubacteriaceae  Lachnospiraceae  0.374  0.371 
OTU675  OTU6256  Bacteroidaceae  Lachnospiraceae  0.362  0.362 
OTU1629  OTU6256  Lachnospiraceae  Lachnospiraceae  0.374  0.357 
OTU2970  OTU4496  Ruminococcaceae  Lachnospiraceae  0.358  0.356 
OTU4273  OTU5937  Eubacteriaceae  Veillonellaceae  0.366  0.354 
OTU710  OTU4496  Erysipelotrichaceae  Lachnospiraceae  0.354  0.349 
OTU4257  OTU6256  Rikenellaceae  Lachnospiraceae  0.346  0.344 
OTU4257  OTU4496  Rikenellaceae  Lachnospiraceae  0.339  0.334 
OTU1193  OTU4496  Ruminococcaceae  Lachnospiraceae  0.336  0.334 
OTU2642  OTU2728  Lachnospiraceae  Lachnospiraceae  0.385  0.329 
OTU1373  OTU4496  ‐‐  Lachnospiraceae  0.322  0.320 
OTU4273  OTU6256  Eubacteriaceae  Lachnospiraceae  0.329  0.320 
OTU1462  OTU3991  Lachnospiraceae  Erysipelotrichaceae  0.326  0.319 
OTU2941  OTU4496  Lachnospiraceae  Lachnospiraceae  0.332  0.317 
OTU2728  OTU5490  Lachnospiraceae  Lachnospiraceae  0.353  0.316 
OTU4496  OTU5420  Lachnospiraceae  Bacteroidaceae  0.312  0.312 
OTU1629  OTU4496  Lachnospiraceae  Lachnospiraceae  0.305  0.305 
OTU5937  OTU6224  Veillonellaceae  Lachnospiraceae  0.301  0.299 
OTU2350  OTU4496  Rikenellaceae  Lachnospiraceae  0.302  0.295 
OTU1347  OTU6256  Bacteroidaceae  Lachnospiraceae  0.329  0.294 
OTU675  OTU4496  Bacteroidaceae  Lachnospiraceae  0.296  0.293 
OTU4496  OTU5117  Lachnospiraceae  Lachnospiraceae  0.291  0.291 
OTU1285  OTU6256  Desulfovibrionaceae  Lachnospiraceae  0.287  0.286 
OTU1347  OTU4496  Bacteroidaceae  Lachnospiraceae  0.291  0.285 
OTU4496  OTU5370  Lachnospiraceae  Lachnospiraceae  0.291  0.283 
OTU3994  OTU5937  Bacteroidaceae  Veillonellaceae  0.285  0.283 
OTU3994  OTU4496  Bacteroidaceae  Lachnospiraceae  0.294  0.282 
OTU4257  OTU5937  Rikenellaceae  Veillonellaceae  0.379  0.281 
OTU710  OTU5937  Erysipelotrichaceae  Veillonellaceae  0.296  0.277 
OTU1373  OTU5937  ‐‐  Veillonellaceae  0.281  0.277 
OTU1548  OTU6256  Ruminococcaceae  Lachnospiraceae  0.277  0.276 
OTU453  OTU4496  Enterococcaceae  Lachnospiraceae  0.282  0.276 
OTU1347  OTU5937  Bacteroidaceae  Veillonellaceae  0.300  0.275 
OTU2728  OTU5937  Lachnospiraceae  Veillonellaceae  0.276  0.270 
OTU2970  OTU6256  Ruminococcaceae  Lachnospiraceae  0.289  0.268 
OTU1629  OTU3991  Lachnospiraceae  Erysipelotrichaceae  0.292  0.267 
OTU4865  OTU5937  ‐‐  Veillonellaceae  0.321  0.264 
OTU3991  OTU4273  Erysipelotrichaceae  Eubacteriaceae  0.266  0.262 
OTU2350  OTU6256  Rikenellaceae  Lachnospiraceae  0.272  0.261 
OTU2941  OTU6256  Lachnospiraceae  Lachnospiraceae  0.280  0.259 
OTU5420  OTU5937  Bacteroidaceae  Veillonellaceae  0.432  0.259 
OTU4496  OTU4501  Lachnospiraceae  Ruminococcaceae  0.259  0.258 
OTU1285  OTU4496  Desulfovibrionaceae  Lachnospiraceae  0.256  0.256 
OTU5407  OTU5420  Porphyromonadaceae  Bacteroidaceae  0.272  0.255 
OTU3991  OTU4435  Erysipelotrichaceae  Erysipelotrichaceae  0.251  0.251 
OTU5826  OTU6256  Ruminococcaceae  Lachnospiraceae  0.251  0.251 
OTU1285  OTU5937  Desulfovibrionaceae  Veillonellaceae  0.296  0.250 
OTU4496  OTU5826  Lachnospiraceae  Ruminococcaceae  0.255  0.250 
OTU4865  OTU6256  ‐‐  Lachnospiraceae  0.249  0.249 
OTU6256  OTU6484  Lachnospiraceae  Bacteroidaceae  0.247  0.247 
OTU4496  OTU6484  Lachnospiraceae  Bacteroidaceae  0.247  0.246 
OTU1629  OTU5937  Lachnospiraceae  Veillonellaceae  0.266  0.245 
OTU4865  OTU5407  ‐‐  Porphyromonadaceae  0.245  0.244 
OTU4496  OTU4865  Lachnospiraceae  ‐‐  0.252  0.244 
OTU2399  OTU2728  Lachnospiraceae  Lachnospiraceae  0.244  0.244 
OTU2399  OTU5420  Lachnospiraceae  Bacteroidaceae  0.250  0.243 
OTU2516  OTU4496  Lachnospiraceae  Lachnospiraceae  0.253  0.242 
OTU5117  OTU6256  Lachnospiraceae  Lachnospiraceae  0.243  0.241 
OTU5826  OTU5937  Ruminococcaceae  Veillonellaceae  0.264  0.240 
OTU4435  OTU5937  Erysipelotrichaceae  Veillonellaceae  0.244  0.239 
OTU2728  OTU5407  Lachnospiraceae  Porphyromonadaceae  0.239  0.238 
OTU2036  OTU6256  ‐‐  Lachnospiraceae  0.236  0.235 
OTU774  OTU1347  Ruminococcaceae  Bacteroidaceae  0.236  0.235 
OTU2970  OTU3991  Ruminococcaceae  Erysipelotrichaceae  0.236  0.235 
OTU3991  OTU5370  Erysipelotrichaceae  Lachnospiraceae  0.235  0.235 
OTU155  OTU6256  Ruminococcaceae  Lachnospiraceae  0.251  0.232 
OTU4501  OTU6256  Ruminococcaceae  Lachnospiraceae  0.232  0.232 
OTU453  OTU3991  Enterococcaceae  Erysipelotrichaceae  0.241  0.232 
OTU1548  OTU4496  Ruminococcaceae  Lachnospiraceae  0.234  0.231 

 

Table S13: Non-coexistence relationships in the microbiome dataset explained by diet; under one diet OTU
X dominates, while under another diet, OTU Y dominates. The relationships in this table are sorted by
non-linearity (MIC− ρ2) and not by MIC.
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Table S14: Relationships unaffected by any of the auxiliary variables recorded in the dataset of [29] (see
Section 4.8).

OTU X  OTU Y  Family of OTU X  Family of OTU Y  MIC  Nonlinearity 
OTU1177  OTU4154  Lachnospiraceae  Prevotellaceae 0.455 0.439
OTU2728  OTU3349  Lachnospiraceae  Porphyromonadaceae 0.461 0.432
OTU453  OTU1373  Enterococcaceae  ‐‐ 0.461 0.429
OTU1100  OTU3350  Lachnospiraceae  Lachnospiraceae 0.479 0.427
OTU5417  OTU5948  ‐‐  Bacteroidaceae 0.441 0.422
OTU2728  OTU5499  Lachnospiraceae  Lachnospiraceae 0.445 0.415
OTU453  OTU5691  Enterococcaceae  Enterococcaceae 0.546 0.376
OTU453  OTU2970  Enterococcaceae  Ruminococcaceae 0.498 0.374
OTU3732  OTU5499  Lachnospiraceae  Lachnospiraceae 0.391 0.368
OTU2728  OTU5319  Lachnospiraceae  Lachnospiraceae 0.428 0.368
OTU5417  OTU5429  ‐‐  Bacteroidaceae 0.368 0.367
OTU3855  OTU4154  ‐‐  Prevotellaceae 0.406 0.363
OTU1901  OTU3102  Erysipelotrichaceae  Lachnospiraceae 0.358 0.357
OTU2399  OTU3406  Lachnospiraceae  Bacteroidaceae 0.386 0.352
OTU1193  OTU1373  Ruminococcaceae  ‐‐ 0.512 0.350
OTU5417  OTU6256  ‐‐  Lachnospiraceae 0.346 0.346
OTU1373  OTU2970  ‐‐  Ruminococcaceae 0.545 0.341
OTU6224  OTU6256  Lachnospiraceae  Lachnospiraceae 0.348 0.340
OTU708  OTU2171  Lachnospiraceae  Lachnospiraceae 0.340 0.339
OTU1901  OTU6372  Erysipelotrichaceae  Porphyromonadaceae 0.342 0.335
OTU254  OTU1779  Erysipelotrichaceae  Lachnospiraceae 0.332 0.332
OTU1373  OTU5691  ‐‐  Enterococcaceae 0.358 0.329
OTU1812  OTU2728  Lachnospiraceae  Lachnospiraceae 0.328 0.326
OTU708  OTU5499  Lachnospiraceae  Lachnospiraceae 0.363 0.325
OTU3406  OTU6224  Bacteroidaceae  Lachnospiraceae 0.371 0.324
OTU675  OTU5948  Bacteroidaceae  Bacteroidaceae 0.321 0.320
OTU1779  OTU3711  Lachnospiraceae  Lachnospiraceae 0.322 0.319
OTU4257  OTU5948  Rikenellaceae  Bacteroidaceae 0.327 0.317
OTU3406  OTU4273  Bacteroidaceae  Eubacteriaceae 0.338 0.315
OTU2211  OTU4154  Prevotellaceae  Prevotellaceae 0.382 0.314
OTU453  OTU1193  Enterococcaceae  Ruminococcaceae 0.536 0.312
OTU2839  OTU4486  Verrucomicrobiaceae  Coriobacteriales 0.320 0.309
OTU2079  OTU2728  Porphyromonadaceae  Lachnospiraceae 0.318 0.306
OTU710  OTU6256  Erysipelotrichaceae  Lachnospiraceae 0.324 0.304
OTU2371  OTU6372  Lachnospiraceae  Porphyromonadaceae 0.328 0.303
OTU3708  OTU4435  Lachnospiraceae  Erysipelotrichaceae 0.302 0.302
OTU2516  OTU6256  Lachnospiraceae  Lachnospiraceae 0.326 0.302
OTU3994  OTU6256  Bacteroidaceae  Lachnospiraceae 0.304 0.300
OTU3349  OTU5499  Porphyromonadaceae  Lachnospiraceae 0.588 0.299
OTU708  OTU4852  Lachnospiraceae  Porphyromonadaceae 0.359 0.298
OTU1177  OTU6256  Lachnospiraceae  Lachnospiraceae 0.317 0.298
OTU4273  OTU5948  Eubacteriaceae  Bacteroidaceae 0.342 0.295
OTU3263  OTU6256  Lachnospiraceae  Lachnospiraceae 0.301 0.295
OTU1373  OTU6256  ‐‐  Lachnospiraceae 0.311 0.295
OTU618  OTU5499  Erysipelotrichaceae  Lachnospiraceae 0.305 0.295
OTU5948  OTU6484  Bacteroidaceae  Bacteroidaceae 0.297 0.294
OTU5420  OTU5948  Bacteroidaceae  Bacteroidaceae 0.341 0.294
OTU3520  OTU3991  Erysipelotrichaceae  Erysipelotrichaceae 0.304 0.294
OTU3406  OTU6256  Bacteroidaceae  Lachnospiraceae 0.329 0.292
OTU2211  OTU3592  Prevotellaceae  ‐‐ 0.360 0.290
OTU1150  OTU5948  ‐‐  Bacteroidaceae 0.289 0.288
OTU1484  OTU4380  ‐‐  Ruminococcaceae 0.401 0.288
OTU556  OTU4512  Lachnospiraceae  Coriobacteriales 0.286 0.285
OTU4154  OTU6256  Prevotellaceae  Lachnospiraceae 0.326 0.284
OTU1462  OTU6256  Lachnospiraceae  Lachnospiraceae 0.286 0.284
OTU5319  OTU5417  Lachnospiraceae  ‐‐ 0.281 0.280
OTU4865  OTU5948  ‐‐  Bacteroidaceae 0.279 0.279
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OTU2320  OTU5499  Lachnospiraceae  Lachnospiraceae 0.294 0.279
OTU3102  OTU6372  Lachnospiraceae  Porphyromonadaceae 0.430 0.279
OTU4083  OTU5948  Streptococcaceae  Bacteroidaceae 0.301 0.278
OTU1177  OTU1541  Lachnospiraceae  Lachnospiraceae 0.278 0.278
OTU5429  OTU6224  Bacteroidaceae  Lachnospiraceae 0.300 0.278
OTU453  OTU4435  Enterococcaceae  Erysipelotrichaceae 0.367 0.278
OTU155  OTU1373  Ruminococcaceae  ‐‐ 0.393 0.276
OTU2371  OTU3102  Lachnospiraceae  Lachnospiraceae 0.345 0.275
OTU1347  OTU4154  Bacteroidaceae  Prevotellaceae 0.284 0.274
OTU1044  OTU3406  Lachnospiraceae  Bacteroidaceae 0.385 0.273
OTU5319  OTU6256  Lachnospiraceae  Lachnospiraceae 0.282 0.272
OTU5948  OTU6224  Bacteroidaceae  Lachnospiraceae 0.334 0.272
OTU1779  OTU4822  Lachnospiraceae  Lachnospiraceae 0.272 0.271
OTU3592  OTU3855  ‐‐  ‐‐ 0.311 0.271
OTU2839  OTU4273  Verrucomicrobiaceae  Eubacteriaceae 0.274 0.271
OTU770  OTU6256  Lachnospiraceae  Lachnospiraceae 0.292 0.271
OTU254  OTU4473  Erysipelotrichaceae  Bacteroidaceae 0.289 0.270
OTU155  OTU1333  Ruminococcaceae  Clostridiaceae 0.293 0.270
OTU5948  OTU6256  Bacteroidaceae  Lachnospiraceae 0.297 0.269
OTU708  OTU1629  Lachnospiraceae  Lachnospiraceae 0.271 0.268
OTU770  OTU1098  Lachnospiraceae  Lachnospiraceae 0.299 0.267
OTU1177  OTU1779  Lachnospiraceae  Lachnospiraceae 0.266 0.266
OTU3406  OTU5948  Bacteroidaceae  Bacteroidaceae 0.681 0.266
OTU2970  OTU5691  Ruminococcaceae  Enterococcaceae 0.384 0.265
OTU1629  OTU3406  Lachnospiraceae  Bacteroidaceae 0.294 0.265
OTU675  OTU1062  Bacteroidaceae  Lactobacillaceae 0.271 0.265
OTU710  OTU774  Erysipelotrichaceae  Ruminococcaceae 0.320 0.264
OTU4273  OTU5429  Eubacteriaceae  Bacteroidaceae 0.286 0.264
OTU708  OTU4154  Lachnospiraceae  Prevotellaceae 0.296 0.264
OTU708  OTU6372  Lachnospiraceae  Porphyromonadaceae 0.265 0.263
OTU1347  OTU5948  Bacteroidaceae  Bacteroidaceae 0.265 0.263
OTU3263  OTU5370  Lachnospiraceae  Lachnospiraceae 0.376 0.262
OTU3994  OTU5429  Bacteroidaceae  Bacteroidaceae 0.266 0.262
OTU453  OTU5948  Enterococcaceae  Bacteroidaceae 0.333 0.261
OTU4273  OTU4435  Eubacteriaceae  Erysipelotrichaceae 0.365 0.261
OTU453  OTU2516  Enterococcaceae  Lachnospiraceae 0.374 0.261
OTU710  OTU3263  Erysipelotrichaceae  Lachnospiraceae 0.267 0.260
OTU1100  OTU1901  Lachnospiraceae  Erysipelotrichaceae 0.262 0.260
OTU774  OTU2399  Ruminococcaceae  Lachnospiraceae 0.345 0.259
OTU345  OTU1062  ‐‐  Lactobacillaceae 0.276 0.259
OTU453  OTU2350  Enterococcaceae  Rikenellaceae 0.259 0.259
OTU708  OTU4473  Lachnospiraceae  Bacteroidaceae 0.263 0.258
OTU1462  OTU3708  Lachnospiraceae  Lachnospiraceae 0.297 0.257
OTU1901  OTU5063  Erysipelotrichaceae  Lachnospiraceae 0.257 0.256
OTU2350  OTU6224  Rikenellaceae  Lachnospiraceae 0.285 0.256
OTU708  OTU1177  Lachnospiraceae  Lachnospiraceae 0.257 0.256
OTU710  OTU5691  Erysipelotrichaceae  Enterococcaceae 0.298 0.256
OTU4154  OTU4810  Prevotellaceae  Prevotellaceae 0.378 0.255
OTU2350  OTU2970  Rikenellaceae  Ruminococcaceae 0.288 0.255
OTU4877  OTU5319  ‐‐  Lachnospiraceae 0.302 0.255
OTU1333  OTU5117  Clostridiaceae  Lachnospiraceae 0.271 0.255
OTU708  OTU2941  Lachnospiraceae  Lachnospiraceae 0.254 0.254
OTU3855  OTU4380  ‐‐  Ruminococcaceae 0.257 0.254
OTU2399  OTU5948  Lachnospiraceae  Bacteroidaceae 0.302 0.253
OTU155  OTU2350  Ruminococcaceae  Rikenellaceae 0.272 0.253
OTU1373  OTU3406  ‐‐  Bacteroidaceae 0.322 0.253
OTU4435  OTU5948  Erysipelotrichaceae  Bacteroidaceae 0.323 0.252
OTU2941  OTU3991  Lachnospiraceae  Erysipelotrichaceae 0.280 0.252
OTU710  OTU770  Erysipelotrichaceae  Lachnospiraceae 0.271 0.252
OTU774  OTU4380  Ruminococcaceae  Ruminococcaceae 0.255 0.251
OTU5139  OTU5319  Ruminococcaceae  Lachnospiraceae 0.303 0.250
OTU1285  OTU5948  Desulfovibrionaceae  Bacteroidaceae 0.259 0.250
OTU708  OTU730  Lachnospiraceae  Lachnospiraceae 0.306 0.250
OTU85  OTU4810  #N/A  Prevotellaceae 0.341 0.249
OTU254  OTU5499  Erysipelotrichaceae  Lachnospiraceae 0.250 0.249
OTU710  OTU2839  Erysipelotrichaceae  Verrucomicrobiaceae 0.263 0.249
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OTU1062  OTU1098  Lactobacillaceae  Lachnospiraceae 0.253 0.248
OTU254  OTU4969  Erysipelotrichaceae  Erysipelotrichaceae 0.251 0.248
OTU1779  OTU4473  Lachnospiraceae  Bacteroidaceae 0.282 0.247
OTU2400  OTU5319  Lachnospiraceae  Lachnospiraceae 0.278 0.247
OTU170  OTU708  ‐‐  Lachnospiraceae 0.249 0.247
OTU1779  OTU4154  Lachnospiraceae  Prevotellaceae 0.247 0.246
OTU4154  OTU4837  Prevotellaceae  Ruminococcaceae 0.261 0.246
OTU2728  OTU6256  Lachnospiraceae  Lachnospiraceae 0.252 0.246
OTU3406  OTU4257  Bacteroidaceae  Rikenellaceae 0.259 0.245
OTU1193  OTU3406  Ruminococcaceae  Bacteroidaceae 0.335 0.244
OTU1462  OTU5319  Lachnospiraceae  Lachnospiraceae 0.254 0.244
OTU1373  OTU5370  ‐‐  Lachnospiraceae 0.425 0.244
OTU774  OTU3994  Ruminococcaceae  Bacteroidaceae 0.255 0.244
OTU1462  OTU5862  Lachnospiraceae  Lachnospiraceae 0.267 0.244
OTU5319  OTU5429  Lachnospiraceae  Bacteroidaceae 0.316 0.243
OTU1373  OTU4435  ‐‐  Erysipelotrichaceae 0.348 0.243
OTU4435  OTU6256  Erysipelotrichaceae  Lachnospiraceae 0.261 0.243
OTU3406  OTU4083  Bacteroidaceae  Streptococcaceae 0.256 0.242
OTU1177  OTU5499  Lachnospiraceae  Lachnospiraceae 0.246 0.242
OTU4435  OTU5429  Erysipelotrichaceae  Bacteroidaceae 0.268 0.242
OTU708  OTU3994  Lachnospiraceae  Bacteroidaceae 0.243 0.242
OTU708  OTU1779  Lachnospiraceae  Lachnospiraceae 0.241 0.241
OTU708  OTU5948  Lachnospiraceae  Bacteroidaceae 0.243 0.241
OTU1373  OTU5429  ‐‐  Bacteroidaceae 0.274 0.241
OTU2516  OTU3406  Lachnospiraceae  Bacteroidaceae 0.303 0.241
OTU149  OTU5499  Lachnospiraceae  Lachnospiraceae 0.248 0.241
OTU5830  OTU6486  Lachnospiraceae  Helicobacteraceae 0.246 0.241
OTU4154  OTU5499  Prevotellaceae  Lachnospiraceae 0.246 0.240
OTU4154  OTU4512  Prevotellaceae  Coriobacteriales 0.242 0.240
OTU1629  OTU5948  Lachnospiraceae  Bacteroidaceae 0.270 0.239
OTU4154  OTU5407  Prevotellaceae  Porphyromonadaceae 0.243 0.239
OTU2839  OTU5429  Verrucomicrobiaceae  Bacteroidaceae 0.241 0.239
OTU675  OTU2728  Bacteroidaceae  Lachnospiraceae 0.239 0.239
OTU1062  OTU3895  Lactobacillaceae  ‐‐ 0.262 0.239
OTU5429  OTU6256  Bacteroidaceae  Lachnospiraceae 0.305 0.238
OTU1098  OTU2245  Lachnospiraceae  Ruminococcaceae 0.261 0.238
OTU1098  OTU3110  Lachnospiraceae  ‐‐ 0.257 0.238
OTU5499  OTU6325  Lachnospiraceae  Lachnospiraceae 0.319 0.237
OTU708  OTU3102  Lachnospiraceae  Lachnospiraceae 0.242 0.237
OTU1373  OTU5948  ‐‐  Bacteroidaceae 0.316 0.237
OTU1541  OTU1779  Lachnospiraceae  Lachnospiraceae 0.237 0.237
OTU3711  OTU4473  Lachnospiraceae  Bacteroidaceae 0.245 0.236
OTU453  OTU5370  Enterococcaceae  Lachnospiraceae 0.436 0.236
OTU3406  OTU6484  Bacteroidaceae  Bacteroidaceae 0.244 0.236
OTU1901  OTU4435  Erysipelotrichaceae  Erysipelotrichaceae 0.241 0.236
OTU3406  OTU4154  Bacteroidaceae  Prevotellaceae 0.236 0.236
OTU254  OTU336  Erysipelotrichaceae  Ruminococcaceae 0.252 0.235
OTU774  OTU3406  Ruminococcaceae  Bacteroidaceae 0.414 0.235
OTU1177  OTU3711  Lachnospiraceae  Lachnospiraceae 0.235 0.235
OTU710  OTU3110  Erysipelotrichaceae  ‐‐ 0.247 0.235
OTU336  OTU1779  Ruminococcaceae  Lachnospiraceae 0.234 0.234
OTU3349  OTU5348  Porphyromonadaceae  Ruminococcaceae 0.244 0.234
OTU1062  OTU5763  Lactobacillaceae  ‐‐ 0.238 0.234
OTU3406  OTU5319  Bacteroidaceae  Lachnospiraceae 0.327 0.233
OTU4154  OTU4380  Prevotellaceae  Ruminococcaceae 0.434 0.233
OTU2728  OTU5673  Lachnospiraceae  Lachnospiraceae 0.238 0.232
OTU1062  OTU3046  Lactobacillaceae  Lachnospiraceae 0.244 0.232
OTU1779  OTU5499  Lachnospiraceae  Lachnospiraceae 0.239 0.232
OTU336  OTU3711  Ruminococcaceae  Lachnospiraceae 0.261 0.232
OTU2839  OTU3991  Verrucomicrobiaceae  Erysipelotrichaceae 0.250 0.231
OTU1177  OTU1812  Lachnospiraceae  Lachnospiraceae 0.244 0.231
OTU2400  OTU2728  Lachnospiraceae  Lachnospiraceae 0.249 0.231
OTU730  OTU5319  Lachnospiraceae  Lachnospiraceae 0.269 0.231
OTU2839  OTU2941  Verrucomicrobiaceae  Lachnospiraceae 0.241 0.230
OTU1193  OTU5691  Ruminococcaceae  Enterococcaceae 0.408 0.229
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